Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 21–35 (Mi tvp4171)  

This article is cited in 22 scientific papers (total in 22 papers)

Description of Markovian Random Fields by Gibbsian Conditional Probabilities

M. B. Averintsev

Moscow
Abstract: Let T be a v-dimensional cubic lattice and L a finite set of points from T. Suppose that the conditional probabilities of a random field ξ(t) are positive and for any sT, x, x(t).
Pr{ξ(s)=xξ(t)=x(t), tT{s}}=Pr{ξ(s)=xξ(t)=x(t), tL+s} Then ξ(t) is called an L-Markov random field with positive conditional probabilities.
In the paper, we prove that any such field ξ(t) is a Gibbs field, in general, with many-particle potential.
Received: 13.01.1971
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 1, Pages 20–33
DOI: https://doi.org/10.1137/1117002
Bibliographic databases:
Language: Russian
Citation: M. B. Averintsev, “Description of Markovian Random Fields by Gibbsian Conditional Probabilities”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 21–35; Theory Probab. Appl., 17:1 (1973), 20–33
Citation in format AMSBIB
\Bibitem{Ave72}
\by M.~B.~Averintsev
\paper Description of Markovian Random Fields by Gibbsian Conditional Probabilities
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 21--35
\mathnet{http://mi.mathnet.ru/tvp4171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=305490}
\zmath{https://zbmath.org/?q=an:0294.60031}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 1
\pages 20--33
\crossref{https://doi.org/10.1137/1117002}
Linking options:
  • https://www.mathnet.ru/eng/tvp4171
  • https://www.mathnet.ru/eng/tvp/v17/i1/p21
  • This publication is cited in the following 22 articles:
    1. Sebastián Barbieri, Ricardo Gómez, Brian Marcus, Tom Meyerovitch, Siamak Taati, “Gibbsian Representations of Continuous Specifications: The Theorems of Kozlov and Sullivan Revisited”, Commun. Math. Phys., 382:2 (2021), 1111  crossref
    2. Enrique Hernández-Lemus, “Random Fields in Physics, Biology and Data Science”, Front. Phys., 9 (2021)  crossref
    3. O. O. Haivoronskyy, Yu. M. Ermoliev, P. S. Knopov, V. I. Norkin, “Mathematical Modeling of Distributed Catastrophic and Terrorist Risks1”, Cybern Syst Anal, 51:1 (2015), 85  crossref
    4. P. S. Knopov, A. S. Samosonok, “On Markov stochastic processes with local interaction for solving some applied problems”, Cybern Syst Anal, 47:3 (2011), 346  crossref
    5. Gibbs Measures and Phase Transitions, 2011, 495  crossref
    6. P. S. Knopov, “Markov fields and their applications in economics”, J Math Sci, 97:2 (1999), 3923  crossref
    7. Georgy L. Gimel'farb, Advances in Computer Vision, 1997, 89  crossref
    8. G.L. Gimel'farb, Proceedings of 13th International Conference on Pattern Recognition, 1996, 591  crossref
    9. R. L. Dobrushin, Yu. M. Sukhov, J. Fritz, “A. N. Kolmogorov – the founder of the theory of reversible Markov processes”, Russian Math. Surveys, 43:6 (1988), 157–182  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    10. Gibbs Measures and Phase Transitions, 1988  crossref
    11. S. B. Shlosman, “Relations Between Cumulants of Random Fields with an Attraction”, Theory Probab. Appl., 33:4 (1988), 645–655  mathnet  mathnet  crossref  isi
    12. V. V. Krivolapova, G. I. Nazin, “Generating functional method and Gibbs random fields on countable sets”, Theoret. and Math. Phys., 47:3 (1981), 514–532  mathnet  crossref  mathscinet  isi
    13. J. Demongeot, Springer Series in Synergetics, 9, Numerical Methods in the Study of Critical Phenomena, 1981, 254  crossref
    14. ABRAHAM BOYARSKY, “A random field model for quantitation and prediction of biological patterns †”, International Journal of Systems Science, 10:10 (1979), 1129  crossref
    15. Sheldon Goldstein, “A note on specifications”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 46:1 (1978), 45  crossref
    16. M. Hamilton, W. J. Anderson, “A consistent system of conditional probabilities which is not compatible with any random field”, Can J Statistics, 6:1 (1978), 95  crossref
    17. Ya. G. Sinai, V. V. Anshelevich, “Some problems of non-commutative ergodic theory”, Russian Math. Surveys, 31:4 (1976), 157–174  mathnet  crossref  mathscinet  zmath
    18. Yu. M. Suhov, “Random point processes and DLR equations”, Commun.Math. Phys., 50:2 (1976), 113  crossref
    19. O. K. Kozlov, “Gibbsian description of point random fields”, Theory Probab. Appl., 21:2 (1977), 339–356  mathnet  mathnet  crossref
    20. O. K. Kozlov, “Opisanie tochechnogo sluchainogo polya potentsialom Gibbsa”, UMN, 30:6(186) (1975), 175–176  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :139
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025