Abstract:
Let T be a v-dimensional cubic lattice and L a finite set of points from T. Suppose that the conditional probabilities of a random field ξ(t) are positive and for any s∈T, x, x(t).
Pr{ξ(s)=x∣ξ(t)=x(t),t∈T∖{s}}=Pr{ξ(s)=x∣ξ(t)=x(t),t∈L+s}
Then ξ(t) is called an L-Markov random field with positive conditional probabilities.
In the paper, we prove that any such field ξ(t) is a Gibbs field, in general, with many-particle potential.
Citation:
M. B. Averintsev, “Description of Markovian Random Fields by Gibbsian Conditional Probabilities”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 21–35; Theory Probab. Appl., 17:1 (1973), 20–33
\Bibitem{Ave72}
\by M.~B.~Averintsev
\paper Description of Markovian Random Fields by Gibbsian Conditional Probabilities
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 21--35
\mathnet{http://mi.mathnet.ru/tvp4171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=305490}
\zmath{https://zbmath.org/?q=an:0294.60031}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 1
\pages 20--33
\crossref{https://doi.org/10.1137/1117002}
Linking options:
https://www.mathnet.ru/eng/tvp4171
https://www.mathnet.ru/eng/tvp/v17/i1/p21
This publication is cited in the following 22 articles:
Sebastián Barbieri, Ricardo Gómez, Brian Marcus, Tom Meyerovitch, Siamak Taati, “Gibbsian Representations of Continuous Specifications: The Theorems of Kozlov and Sullivan Revisited”, Commun. Math. Phys., 382:2 (2021), 1111
Enrique Hernández-Lemus, “Random Fields in Physics, Biology and Data Science”, Front. Phys., 9 (2021)
O. O. Haivoronskyy, Yu. M. Ermoliev, P. S. Knopov, V. I. Norkin, “Mathematical Modeling of Distributed Catastrophic and Terrorist Risks1”, Cybern Syst Anal, 51:1 (2015), 85
P. S. Knopov, A. S. Samosonok, “On Markov stochastic processes with local interaction for solving some applied problems”, Cybern Syst Anal, 47:3 (2011), 346
Gibbs Measures and Phase Transitions, 2011, 495
P. S. Knopov, “Markov fields and their applications in economics”, J Math Sci, 97:2 (1999), 3923
Georgy L. Gimel'farb, Advances in Computer Vision, 1997, 89
G.L. Gimel'farb, Proceedings of 13th International Conference on Pattern Recognition, 1996, 591
R. L. Dobrushin, Yu. M. Sukhov, J. Fritz, “A. N. Kolmogorov – the founder of the theory of reversible Markov processes”, Russian Math. Surveys, 43:6 (1988), 157–182
Gibbs Measures and Phase Transitions, 1988
S. B. Shlosman, “Relations Between Cumulants of Random Fields with an Attraction”, Theory Probab. Appl., 33:4 (1988), 645–655
V. V. Krivolapova, G. I. Nazin, “Generating functional method and Gibbs random fields on countable sets”, Theoret. and Math. Phys., 47:3 (1981), 514–532
J. Demongeot, Springer Series in Synergetics, 9, Numerical Methods in the Study of Critical Phenomena, 1981, 254
ABRAHAM BOYARSKY, “A random field model for quantitation and prediction of biological patterns †”, International Journal of Systems Science, 10:10 (1979), 1129
Sheldon Goldstein, “A note on specifications”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 46:1 (1978), 45
M. Hamilton, W. J. Anderson, “A consistent system of conditional probabilities which is not compatible with any random field”, Can J Statistics, 6:1 (1978), 95
Ya. G. Sinai, V. V. Anshelevich, “Some problems of non-commutative ergodic theory”, Russian Math. Surveys, 31:4 (1976), 157–174
Yu. M. Suhov, “Random point processes and DLR equations”, Commun.Math. Phys., 50:2 (1976), 113
O. K. Kozlov, “Gibbsian description of point random fields”, Theory Probab. Appl., 21:2 (1977), 339–356
O. K. Kozlov, “Opisanie tochechnogo sluchainogo polya potentsialom Gibbsa”, UMN, 30:6(186) (1975), 175–176