Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1992, Volume 37, Issue 2, Pages 276–289 (Mi tvp4082)  

This article is cited in 3 scientific papers (total in 3 papers)

Rate of Convergence for Sums and Maxima and Doubly Ideal Metrics

S. T. Rachev, L. Rüschendorf
Full-text PDF (906 kB) Citations (3)
Abstract: It is well known that the minimal $L_p $-metrics are ideal with respect to summation and maxima of order $r=\min(p,1)$. This implies that one can get rate of convergence results in stable limit theorems with $0<\alpha<1$ with respect to maxima and sums. It will be shown that one can extend and improve the ideality properties of minimal $L_p $-metrics to stable limit theorems with $0<\alpha<2$. As a consequence one obtains, e.g., an improvement of the classical results on the rate of convergence of sums with values in Banach spaces with respect to the Prokhorov distance. In the second part of the paper it is proved that a problem posed by Zolotarev in 1983 on the existence of doubly ideal metrics of order $r>1$ has an essential negative answer. In spite of this the minimal $L_p $-metrics behave like ideal metrics of order $r>1$ with respect to maxima and sums. This allows to improve results on the stability of queueing models respect to departures from the ideal model.
Received: 10.04.1989
English version:
Theory of Probability and its Applications, 1993, Volume 37, Issue 2, Pages 222–235
DOI: https://doi.org/10.1137/1137055
Bibliographic databases:
Language: English
Citation: S. T. Rachev, L. Rüschendorf, “Rate of Convergence for Sums and Maxima and Doubly Ideal Metrics”, Teor. Veroyatnost. i Primenen., 37:2 (1992), 276–289; Theory Probab. Appl., 37:2 (1993), 222–235
Citation in format AMSBIB
\Bibitem{RacRus92}
\by S.~T.~Rachev, L.~R\"uschendorf
\paper Rate of Convergence for Sums and Maxima and Doubly Ideal Metrics
\jour Teor. Veroyatnost. i Primenen.
\yr 1992
\vol 37
\issue 2
\pages 276--289
\mathnet{http://mi.mathnet.ru/tvp4082}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1211169}
\zmath{https://zbmath.org/?q=an:0787.60006}
\transl
\jour Theory Probab. Appl.
\yr 1993
\vol 37
\issue 2
\pages 222--235
\crossref{https://doi.org/10.1137/1137055}
Linking options:
  • https://www.mathnet.ru/eng/tvp4082
  • https://www.mathnet.ru/eng/tvp/v37/i2/p276
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024