Abstract:
The problem of the estimation of a stationary distribution function of an ergodic diffusion process with unknown trend coefficient is considered. An elementary proof of the lower minimax bound with integrated mean square error is proposed and it is shown that the empiric distribution attains this bound.
Citation:
Yu. A. Kutoyants, I. Negri, “On L2 Efficiency of an Empiric Distribution for Ergodic Diffusion Processes”, Teor. Veroyatnost. i Primenen., 46:1 (2001), 164–169; Theory Probab. Appl., 46:1 (2002), 140–146
\Bibitem{KutNeg01}
\by Yu.~A.~Kutoyants, I.~Negri
\paper On $L_2$ Efficiency of an Empiric Distribution for Ergodic Diffusion Processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 1
\pages 164--169
\mathnet{http://mi.mathnet.ru/tvp4034}
\crossref{https://doi.org/10.4213/tvp4034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1968714}
\zmath{https://zbmath.org/?q=an:0990.62073}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 1
\pages 140--146
\crossref{https://doi.org/10.1137/S0040585X97978816}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174464700011}
Linking options:
https://www.mathnet.ru/eng/tvp4034
https://doi.org/10.4213/tvp4034
https://www.mathnet.ru/eng/tvp/v46/i1/p164
This publication is cited in the following 3 articles:
Sören Christensen, Claudia Strauch, “Nonparametric learning for impulse control problems—Exploration vs. exploitation”, Ann. Appl. Probab., 33:2 (2023)
Negri I., “Efficiency of a Class of Unbiased Estimators for the Invariant Distribution Function of a Diffusion Process”, Communications in Statistics–Theory and Methods, 39:1 (2010), 177–185
van der Vaart A., van Zanten H., “Donsker theorems for diffusions: Necessary and sufficient conditions”, Annals of Probability, 33:4 (2005), 1422–1451