Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 4, Pages 910–917 (Mi tvp4031)  

This article is cited in 10 scientific papers (total in 10 papers)

Short Communications

Nonparametric change-point estimation for data from an ergodic sequence

E. Carlsteina, S. Leleba

a University of North Carolina at Chapel Hill, USA
b Johns Hopkins University
Abstract: In the framework of the series scheme we assume that an observations sequence $\{X_i^n,1\le i\le n\} $ is such that $X_i^n=U_i I(1\le i\le[\theta n])+V_i I([\theta n]+1\le i\le n)$, where $(U_i,V_i)$ is a stationary ergodic sequence the marginal distributions of which are different, and $\theta $ is a change-point in the probabilistic characteristics such that $\theta\in(0;1)$. The main result of this paper is the proof of the fact that the sequence $(\theta n)_{n\ge1} $ of nonparametric estimations constructed here is consistent $(\theta n\to\theta)$.
Keywords: nonparametric estimation of a change-point in the probabilistic characteristics, consistency of estimations.
Received: 23.01.1990
English version:
Theory of Probability and its Applications, 1993, Volume 38, Issue 4, Pages 726–733
DOI: https://doi.org/10.1137/1138073
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. Carlstein, S. Lele, “Nonparametric change-point estimation for data from an ergodic sequence”, Teor. Veroyatnost. i Primenen., 38:4 (1993), 910–917; Theory Probab. Appl., 38:4 (1993), 726–733
Citation in format AMSBIB
\Bibitem{CarLel93}
\by E.~Carlstein, S.~Lele
\paper Nonparametric change-point estimation for data from an ergodic sequence
\jour Teor. Veroyatnost. i Primenen.
\yr 1993
\vol 38
\issue 4
\pages 910--917
\mathnet{http://mi.mathnet.ru/tvp4031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1318009}
\zmath{https://zbmath.org/?q=an:0819.62029}
\transl
\jour Theory Probab. Appl.
\yr 1993
\vol 38
\issue 4
\pages 726--733
\crossref{https://doi.org/10.1137/1138073}
Linking options:
  • https://www.mathnet.ru/eng/tvp4031
  • https://www.mathnet.ru/eng/tvp/v38/i4/p910
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :65
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024