|
Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 4, Pages 689–741
(Mi tvp4010)
|
|
|
|
This article is cited in 16 scientific papers (total in 16 papers)
Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE
L. Bertinia, E. Presuttia, B. Rüdigera, E. Saadab a Dipartimento di Matematica, Università di Roma Tor Vergata, Roma, Italy
b Université de Rouen, France
Abstract:
We consider an Ising spin system with Glauber dynamics and Kac interactions in one dimension at the critical temperature. We study the fluctuation filed of the magnetization density in a scaling limit which involves space, time and the range of the interaction. We prove that for a suitable choice of the scalings the normalized fluctuations field converges to the solution of a one-dimensional (nonlinear) Ginzburg–Landau equation perturbed by a white noise process.
Keywords:
Kac potentials, critical fluctuations, stochastic quantization of field theories.
Received: 22.07.1993
Citation:
L. Bertini, E. Presutti, B. Rüdiger, E. Saada, “Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE”, Teor. Veroyatnost. i Primenen., 38:4 (1993), 689–741; Theory Probab. Appl., 38:4 (1993), 586–629
Linking options:
https://www.mathnet.ru/eng/tvp4010 https://www.mathnet.ru/eng/tvp/v38/i4/p689
|
Statistics & downloads: |
Abstract page: | 215 | Full-text PDF : | 247 | First page: | 9 |
|