Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 60–68
DOI: https://doi.org/10.4213/tvp4
(Mi tvp4)
 

This article is cited in 4 scientific papers (total in 4 papers)

On normal approximation for strongly mixing random fields

J. Sunklodas

Institute of Mathematics and Informatics
Full-text PDF (688 kB) Citations (4)
References:
Abstract: In this paper, we estimate the difference $|\mathbf Eh(Z_V)-\mathbf Eh(N)|$, where $Z_V$ is a sum over any finite subset $V$ of the standard lattice $\mathbf Z^d$ of normalized random variables of the strongly mixing random field $\{X_a,\ a\in\mathbf Z^d\}$ (without assuming stationarity) and $N$ is a standard normal random variable for the function $h\colon\mathbf R\to\mathbf R$, which is finite and satisfies the Lipschitz condition. In a particular case, the obtained upper bounds of $|\mathbf Eh(Z_V)-\mathbf Eh(N)|$ in Theorems 3 and 4 are of order $O(|V|^{-1/2})$.
Keywords: normal approximations, bounded Lipschitz metrics, random fields, strong mixing condition, method of Stein.
Received: 25.05.2004
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 125–132
DOI: https://doi.org/10.1137/S0040585X97982815
Bibliographic databases:
Language: Russian
Citation: J. Sunklodas, “On normal approximation for strongly mixing random fields”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 60–68; Theory Probab. Appl., 52:1 (2008), 125–132
Citation in format AMSBIB
\Bibitem{Sun07}
\by J.~Sunklodas
\paper On normal approximation for strongly mixing random fields
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 60--68
\mathnet{http://mi.mathnet.ru/tvp4}
\crossref{https://doi.org/10.4213/tvp4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354569}
\zmath{https://zbmath.org/?q=an:1147.60018}
\elib{https://elibrary.ru/item.asp?id=9466877}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 125--132
\crossref{https://doi.org/10.1137/S0040585X97982815}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549144024}
Linking options:
  • https://www.mathnet.ru/eng/tvp4
  • https://doi.org/10.4213/tvp4
  • https://www.mathnet.ru/eng/tvp/v52/i1/p60
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :155
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024