|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 3, Pages 528–530
(Mi tvp399)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
On the Stability of Solutions to Linear Problems for Stationary Processes
Yu. A. Rozanov Moscow
Abstract:
Let $\xi(t)$ be a stationary process with spectral function $F(\lambda)$, prediction error
$$
\sigma^2=\inf\int\left|e^{i\lambda\tau}-\sum_{t\in T}c(t)e^{i\lambda t}\right|^2dF(\lambda)
$$
and let
$$
\delta(G)^2=\inf\int\left|e^{i\lambda\tau}-\sum_{t\in T}c(t)e^{i\lambda t}\right|^2dF_1(\lambda),
$$
where $F_1(\lambda)=F(\lambda)+G(\lambda)$, $dG(\lambda)\geqq 0$ and $\int{dG(\lambda)\leqq h^2}$. Then $\lim\limits_{h\to 0}\sup\limits_G\delta(G)=\sigma$. Other linear problems similar to the prediction one have solutions with the same properties.
Received: 16.12.1963
Citation:
Yu. A. Rozanov, “On the Stability of Solutions to Linear Problems for Stationary Processes”, Teor. Veroyatnost. i Primenen., 9:3 (1964), 528–530; Theory Probab. Appl., 9:3 (1964), 477–479
Linking options:
https://www.mathnet.ru/eng/tvp399 https://www.mathnet.ru/eng/tvp/v9/i3/p528
|
|