Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 4, Pages 665–687 (Mi tvp3972)  

This article is cited in 2 scientific papers (total in 2 papers)

The esistence of a martingale with given diffusion functional

M. P. Ershov

Moscow
Abstract: Let $\mathbf R_+=[0,\infty)$ and $C$ be the space of continuous functions on $\mathbf R_+$ “starting” from zero with the topology of uniform convergence on compacts.
Let $A\colon \mathbf R_+\times C\mapsto \mathbf R_+$ be a Borel functional such that
(i) for each $\mathbf x\in C$, $A(\,\cdot\,,\mathbf x)\in C$ and is non-decreasing,
(ii) the set
$$ \{\{A(t,\mathbf x)\}_{t\in \mathbf R_+}\mid\mathbf x\in C\} $$
is relatively compact in $C$,
(iii) for each $t\in \mathbf R_+$, $A(t,\,\cdot\,)$ is continuous, and
(iv) for each $t\in \mathbf R_+$, $x_s=y_s$ $(0\le s\le t)$ implies
$$ A(t,\mathbf x)=A(t,y)\quad(\mathbf x=\{x_s\}_{s\in \mathbf R_+},y=\{y_s\}_{s\in \mathbf R_+}). $$
Then we prove that (on some probability space) there exists a continuous martingale $\mathbf X$ such that its Meyer squared variation process
$$ \langle\mathbf X\rangle=A(\,\cdot\,,\mathbf X)\quad\text{a.s.} $$

In particular, in case
$$ A(t,\mathbf x)=\int_0^ta^2(t,\mathbf x)\,ds $$
where $a^2$ is a bounded non-anticipative function, it follows that in the conditions of D. W. Stroock and S. R. S. Varadhan [12] continuity in $(s,\mathbf x)$ may he replaced by that in $\mathbf x$ only.
Received: 18.12.1973
English version:
Theory of Probability and its Applications, 1975, Volume 19, Issue 4, Pages 633–655
DOI: https://doi.org/10.1137/1119075
Bibliographic databases:
Language: Russian
Citation: M. P. Ershov, “The esistence of a martingale with given diffusion functional”, Teor. Veroyatnost. i Primenen., 19:4 (1974), 665–687; Theory Probab. Appl., 19:4 (1975), 633–655
Citation in format AMSBIB
\Bibitem{Ers74}
\by M.~P.~Ershov
\paper The esistence of a~martingale with given diffusion functional
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 4
\pages 665--687
\mathnet{http://mi.mathnet.ru/tvp3972}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=362477}
\zmath{https://zbmath.org/?q=an:0366.60065}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 19
\issue 4
\pages 633--655
\crossref{https://doi.org/10.1137/1119075}
Linking options:
  • https://www.mathnet.ru/eng/tvp3972
  • https://www.mathnet.ru/eng/tvp/v19/i4/p665
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024