Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 3, Pages 624–629 (Mi tvp3970)  

Short Communications

The total number of particles in a reduced Bellman–Harris branching process

V. A. Vatutin

Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: Let $z(t)$ be the number of particles at time $t$ in a Bellman-Harris branching process with generating function $f(s)$ of the number of direct descendants and distribution $G(t)$ of particle lifelength satisfying the conditions
$$ f'(1) = 1,\qquad f(s) = s + (1 - s)^{1 + \alpha } L(1 - s), $$
where $\alpha \in ( {0,1} ]$, the function $L(x)$ varies slowly as $x \to 0 + $, and
$$ \lim_{n \to \infty }\frac{{n( {1 - G(n))}}} {{1 - f_n( 0 )}} = 0, $$
where $f_n ( s )$ is the $n$th iteration of $f(s)$. Denote by $\{ z(\tau ,t), 0 \le \tau \le t\}$ the corresponding reduced Bellman-Harris branching process, where $z(\tau ,t)$ is the number of particles in the initial process at time $\tau $ whose descendants or they themselves are alive at time $t$. Let $\nu (t)$ be the number of dead particles of the reduced process to time $t$. The paper finds the limiting distribution of $\nu(t)$ under the conditions $z(t) > 0$ and $t \to \infty $.
Keywords: critical Bellman–Harris branching process, reduced branching process, the total number of particles, limiting distributions.
Received: 01.10.1991
English version:
Theory of Probability and its Applications, 1993, Volume 38, Issue 3, Pages 567–571
DOI: https://doi.org/10.1137/1138059
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, “The total number of particles in a reduced Bellman–Harris branching process”, Teor. Veroyatnost. i Primenen., 38:3 (1993), 624–629; Theory Probab. Appl., 38:3 (1993), 567–571
Citation in format AMSBIB
\Bibitem{Vat93}
\by V.~A.~Vatutin
\paper The total number of particles in a reduced Bellman--Harris branching process
\jour Teor. Veroyatnost. i Primenen.
\yr 1993
\vol 38
\issue 3
\pages 624--629
\mathnet{http://mi.mathnet.ru/tvp3970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1404669}
\zmath{https://zbmath.org/?q=an:0807.60082}
\transl
\jour Theory Probab. Appl.
\yr 1993
\vol 38
\issue 3
\pages 567--571
\crossref{https://doi.org/10.1137/1138059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993PJ74300022}
Linking options:
  • https://www.mathnet.ru/eng/tvp3970
  • https://www.mathnet.ru/eng/tvp/v38/i3/p624
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:262
    Full-text PDF :62
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024