|
Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 2, Pages 439–453
(Mi tvp3955)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
Covering problems
P. Révész
Abstract:
For a simple symmetric random walk on the lattice $\mathbf{Z}^d$, let $S_n=X_1+\cdots+X_n$ and let $X_1,X_2,\ldots$ be a sequence of independent and identically distributed random vectors with
$$
\mathbf{P}\{X_1=e_i\}=\mathbf{P}\{X_i=-e_i\}=\frac{1}{2d}\qquad (i=1,2,\ldots,d),
$$
where $e_1,e_2,\ldots,e_d $ are the orthogonal unit vectors of $\mathbf{Z}^d$. Denote by $R_d (n)$ the radius of the largest ball $\{x\in\mathbf{Z}^d:\|x\|\le r\}$ every point of which is visited at least once in time $n$.The present paper studies the limiting behavior of $R_d (n)$ for $d=1$, $d=2$, and $d\ge3$.
Keywords:
simple symmetric random walk on $\mathbf{Z}^d$, Pуlya's recurrence theorem, local time of random walk, radius of the balls covered in finite time.
Received: 27.01.1992
Citation:
P. Révész, “Covering problems”, Teor. Veroyatnost. i Primenen., 38:2 (1993), 439–453; Theory Probab. Appl., 38:2 (1993), 367–379
Linking options:
https://www.mathnet.ru/eng/tvp3955 https://www.mathnet.ru/eng/tvp/v38/i2/p439
|
|