Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 2, Pages 439–453 (Mi tvp3955)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

Covering problems

P. Révész
Full-text PDF (632 kB) Citations (2)
Abstract: For a simple symmetric random walk on the lattice $\mathbf{Z}^d$, let $S_n=X_1+\cdots+X_n$ and let $X_1,X_2,\ldots$ be a sequence of independent and identically distributed random vectors with
$$ \mathbf{P}\{X_1=e_i\}=\mathbf{P}\{X_i=-e_i\}=\frac{1}{2d}\qquad (i=1,2,\ldots,d), $$
where $e_1,e_2,\ldots,e_d $ are the orthogonal unit vectors of $\mathbf{Z}^d$. Denote by $R_d (n)$ the radius of the largest ball $\{x\in\mathbf{Z}^d:\|x\|\le r\}$ every point of which is visited at least once in time $n$.The present paper studies the limiting behavior of $R_d (n)$ for $d=1$, $d=2$, and $d\ge3$.
Keywords: simple symmetric random walk on $\mathbf{Z}^d$, Pуlya's recurrence theorem, local time of random walk, radius of the balls covered in finite time.
Received: 27.01.1992
English version:
Theory of Probability and its Applications, 1993, Volume 38, Issue 2, Pages 367–379
DOI: https://doi.org/10.1137/1138034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. Révész, “Covering problems”, Teor. Veroyatnost. i Primenen., 38:2 (1993), 439–453; Theory Probab. Appl., 38:2 (1993), 367–379
Citation in format AMSBIB
\Bibitem{Rev93}
\by P.~R\'ev\'esz
\paper Covering problems
\jour Teor. Veroyatnost. i Primenen.
\yr 1993
\vol 38
\issue 2
\pages 439--453
\mathnet{http://mi.mathnet.ru/tvp3955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317989}
\zmath{https://zbmath.org/?q=an:0807.60068}
\transl
\jour Theory Probab. Appl.
\yr 1993
\vol 38
\issue 2
\pages 367--379
\crossref{https://doi.org/10.1137/1138034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NY72300015}
Linking options:
  • https://www.mathnet.ru/eng/tvp3955
  • https://www.mathnet.ru/eng/tvp/v38/i2/p439
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :62
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024