Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 2, Pages 331–344 (Mi tvp3942)  

This article is cited in 3 scientific papers (total in 4 papers)

Asymptotic behavior of a two-dimensional random walk with topological constraints

L. B. Koralov, S. K. Nechaev, Ya. G. Sinaia

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Full-text PDF (831 kB) Citations (4)
Abstract: A set of topologically trivial closed random walks on the plane is discussed, i.e., the walks that can be contracted to points and remain on the lattice during deformation. As the walk length tends to infinity, the limiting finite-dimensional distributions can be found for normalized coordinates, which can be described in terms of the Wiener branching process.
Keywords: random walk, limiting distribution, Cayley tree, Markov chain, Wiener branching process, statistical weight.
Received: 25.09.1991
English version:
Theory of Probability and its Applications, 1993, Volume 38, Issue 2, Pages 296–306
DOI: https://doi.org/10.1137/1138026
Bibliographic databases:
Language: Russian
Citation: L. B. Koralov, S. K. Nechaev, Ya. G. Sinai, “Asymptotic behavior of a two-dimensional random walk with topological constraints”, Teor. Veroyatnost. i Primenen., 38:2 (1993), 331–344; Theory Probab. Appl., 38:2 (1993), 296–306
Citation in format AMSBIB
\Bibitem{KorNecSin93}
\by L.~B.~Koralov, S.~K.~Nechaev, Ya.~G.~Sinai
\paper Asymptotic behavior of a~two-dimensional random walk with topological constraints
\jour Teor. Veroyatnost. i Primenen.
\yr 1993
\vol 38
\issue 2
\pages 331--344
\mathnet{http://mi.mathnet.ru/tvp3942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317982}
\zmath{https://zbmath.org/?q=an:0807.60067}
\transl
\jour Theory Probab. Appl.
\yr 1993
\vol 38
\issue 2
\pages 296--306
\crossref{https://doi.org/10.1137/1138026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NY72300007}
Linking options:
  • https://www.mathnet.ru/eng/tvp3942
  • https://www.mathnet.ru/eng/tvp/v38/i2/p331
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :135
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024