Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1993, Volume 38, Issue 2, Pages 233–258 (Mi tvp3938)  

This article is cited in 3 scientific papers (total in 3 papers)

Efficient estimation using both direct and indirect observations

P. J. Bickela, Y. Ritovb

a University of California, Berkeley, Department of Statistics
b Department of Statistics, The Hebrew University, Jerusalem
Abstract: The Ibragimov—Khas'minskii model postulates observing $X_1,\ldots,X_m$ independent, identically distributed according to an unknown distribution $G$ and $Y_1,\ldots,Y_n$ independent and identically distributed according to $\int {k(\,\cdot\,,y)}\,dG(y)$, where $k$ is known, for example, $Y$ is obtained from $X$ by convolution with a Gaussian density. We exhibit sieve type estimates of $G$ which are efficient under minimal conditions which include those of Vardi and Zhang (1992) for the special case, $G$ on $[0,\infty]$, $k(x,y)=y^{-1}1(x\le y)$.
Keywords: density estimates, parametric estimation, kernel estimates.
Received: 03.12.1992
English version:
Theory of Probability and its Applications, 1993, Volume 38, Issue 2, Pages 194–213
DOI: https://doi.org/10.1137/1138022
Bibliographic databases:
Language: Russian
Citation: P. J. Bickel, Y. Ritov, “Efficient estimation using both direct and indirect observations”, Teor. Veroyatnost. i Primenen., 38:2 (1993), 233–258; Theory Probab. Appl., 38:2 (1993), 194–213
Citation in format AMSBIB
\Bibitem{BicRit93}
\by P.~J.~Bickel, Y.~Ritov
\paper Efficient estimation using both direct and indirect observations
\jour Teor. Veroyatnost. i Primenen.
\yr 1993
\vol 38
\issue 2
\pages 233--258
\mathnet{http://mi.mathnet.ru/tvp3938}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317978}
\zmath{https://zbmath.org/?q=an:0816.62032}
\transl
\jour Theory Probab. Appl.
\yr 1993
\vol 38
\issue 2
\pages 194--213
\crossref{https://doi.org/10.1137/1138022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NY72300003}
Linking options:
  • https://www.mathnet.ru/eng/tvp3938
  • https://www.mathnet.ru/eng/tvp/v38/i2/p233
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :56
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024