Abstract:
A continuous-time Markov branching process with a single type $T$ of particles is considered in which any pair of particles $T+T$ produces offspring independently of all other particles. In addition, any particle of type $T$ also produces children. Representations for the extinction probabilities of this process are obtained under certain assumptions on the offspring distribution. To establish this result we apply the exponential generating function method for the solution of a stationary backward Kolmogorov system of differential equations (see [A. V. Kalinkin, Theory Probab. Appl., 27 (1982), pp. 201–205]).
Keywords:branching process with interaction of particles, extinction probabilities, Laplace equation for the exponential generating function, explicit solutions.
Citation:
A. V. Kalinkin, “On the Extinction Probability of a Branching Process with Two Kinds of Interaction of Particles”, Teor. Veroyatnost. i Primenen., 46:2 (2001), 376–380; Theory Probab. Appl., 46:2 (2002), 347–352
\Bibitem{Kal01}
\by A.~V.~Kalinkin
\paper On the Extinction Probability of a Branching Process with Two Kinds of Interaction of Particles
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 2
\pages 376--380
\mathnet{http://mi.mathnet.ru/tvp3926}
\crossref{https://doi.org/10.4213/tvp3926}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1968693}
\zmath{https://zbmath.org/?q=an:1020.60072}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 2
\pages 347--352
\crossref{https://doi.org/10.1137/S0040585X97978981}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176400600011}
Linking options:
https://www.mathnet.ru/eng/tvp3926
https://doi.org/10.4213/tvp3926
https://www.mathnet.ru/eng/tvp/v46/i2/p376
This publication is cited in the following 15 articles: