|
This article is cited in 15 scientific papers (total in 15 papers)
Expectation of the Ratio of the Sum of Squares to the Square of the Sum: Exact and Asymptotic Results
A. Fuchsa, A. Joffeb, J. L. Teugelsc a Université de Strasbourg
b Université de Montréal, Département de Mathématiques et de
Statistique
c Katholieke Universiteit Leuven
Abstract:
Let $X_i$, $i=1,\dots,n$, be a sequence of positive independent identically distributed random variables. Define $$
R_n:=\mathbf{E}\frac{X_1^2+X_2^2+\dots+X_n^2}{(X_1+X_2+\dots+X_n)^2}.
$$
Let $\varphi(s)=\mathbf{E}e^{-sX}$. We give an explicit representation of $R_n $ in terms of $\varphi$, and with the help of the Karamata theory of functions of regular variation, we study the asymptotic behavior of $R_n$ for large $n$.
Keywords:
Karamata theory, functions of regular variation, domain of attraction of a stable law, Doeblin's universal law.
Received: 19.05.2000
Citation:
A. Fuchs, A. Joffe, J. L. Teugels, “Expectation of the Ratio of the Sum of Squares to the Square of the Sum: Exact and Asymptotic Results”, Teor. Veroyatnost. i Primenen., 46:2 (2001), 297–310; Theory Probab. Appl., 46:2 (2002), 243–255
Linking options:
https://www.mathnet.ru/eng/tvp3919https://doi.org/10.4213/tvp3919 https://www.mathnet.ru/eng/tvp/v46/i2/p297
|
|