Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 3, Pages 579–585
DOI: https://doi.org/10.4213/tvp3906
(Mi tvp3906)
 

This article is cited in 50 scientific papers (total in 50 papers)

Short Communications

Time Change Representation of Stochastic Integrals

J. Kallsena, A. N. Shiryaevb

a Albert Ludwigs University of Freiburg
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: By the Dambis–Dubins–Schwarz theorem, any stochastic integral $M:=\int_0^\cdot H_sdW_s$ of Brownian motion can be written as a time-changed Brownian motion, i.e., $M=({\widehat{W}}_{\widehat{T_t}})_{t\in\mathbf{R}_+}$ for some Brownian motion $({\widehat{W}}_\theta)_{\theta\in\mathbf{R}_+}$ and some time change $({\widehat{T_t}})_{t\in\mathbf{R}_+}$. In [J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin–Heidelberg, 1987] and [O. Kallenberg, Stochastic Process. Appl., 40 (1992), pp. 199–223] it is shown that in this statement Brownian motion can be replaced with (symmetric) $\alpha$-stable Levy motion. Using the cumulant process of a semimartingale, we give new short proofs. Moreover, we show that the statement cannot be extended to any other Levy processes.
Keywords: stable Levy motions, cumulant process, stochastic integral, time change.
Received: 04.05.2000
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 3, Pages 522–528
DOI: https://doi.org/10.1137/S0040585X97979184
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Kallsen, A. N. Shiryaev, “Time Change Representation of Stochastic Integrals”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 579–585; Theory Probab. Appl., 46:3 (2002), 522–528
Citation in format AMSBIB
\Bibitem{KalShi01}
\by J.~Kallsen, A.~N.~Shiryaev
\paper Time Change Representation of Stochastic Integrals
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 579--585
\mathnet{http://mi.mathnet.ru/tvp3906}
\crossref{https://doi.org/10.4213/tvp3906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978671}
\zmath{https://zbmath.org/?q=an:1034.60055}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 522--528
\crossref{https://doi.org/10.1137/S0040585X97979184}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700010}
Linking options:
  • https://www.mathnet.ru/eng/tvp3906
  • https://doi.org/10.4213/tvp3906
  • https://www.mathnet.ru/eng/tvp/v46/i3/p579
  • This publication is cited in the following 50 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024