|
This article is cited in 50 scientific papers (total in 50 papers)
Short Communications
Time Change Representation of Stochastic Integrals
J. Kallsena, A. N. Shiryaevb a Albert Ludwigs University of Freiburg
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
By the Dambis–Dubins–Schwarz theorem, any stochastic integral $M:=\int_0^\cdot H_sdW_s$ of Brownian motion can be written as a time-changed Brownian motion, i.e., $M=({\widehat{W}}_{\widehat{T_t}})_{t\in\mathbf{R}_+}$ for some Brownian motion $({\widehat{W}}_\theta)_{\theta\in\mathbf{R}_+}$ and some time change $({\widehat{T_t}})_{t\in\mathbf{R}_+}$. In [J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin–Heidelberg, 1987] and [O. Kallenberg, Stochastic Process. Appl., 40 (1992), pp. 199–223] it is shown that in this statement Brownian motion can be replaced with (symmetric) $\alpha$-stable Levy motion. Using the cumulant process of a semimartingale, we give new short proofs. Moreover, we show that the statement cannot be extended to any other Levy processes.
Keywords:
stable Levy motions, cumulant process, stochastic integral, time change.
Received: 04.05.2000
Citation:
J. Kallsen, A. N. Shiryaev, “Time Change Representation of Stochastic Integrals”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 579–585; Theory Probab. Appl., 46:3 (2002), 522–528
Linking options:
https://www.mathnet.ru/eng/tvp3906https://doi.org/10.4213/tvp3906 https://www.mathnet.ru/eng/tvp/v46/i3/p579
|
|