|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 3, Pages 401–430
(Mi tvp390)
|
|
|
|
This article is cited in 18 scientific papers (total in 18 papers)
Boundary Problems in Some Two-Dimensional Random Walks
A. A. Borovkova, B. A. Rogozinb a Novosibirsk
b Novosibirsk
Abstract:
Let $\xi _1^{(i)},\xi_2^{(i)},\dots$, $i=1,2$, be two sequences of independent random variables, $\xi_k^{(2)}>0$, $k=1,2,\dots$, $s_0^{(i)}=0$, $s_n^{(i)}=\sum\nolimits_{k=1}^n{\xi_k^{(i)}}$, $i=1,2$, $\bar s_n=\max_{0\leqq k\leqq n}s_k^{(1)}$, $\eta_t=\max\{{k:s_k^{(2)}<t}\}$. We study the joint distribution of the random variables $\bar s_{\eta_t}$, $s_{\eta_t+1}^{(1)}$, $s_{\eta_t+1}^{(2)}$ including asymptotic expansions, and all the domains of deviations in which limit theorems of Cramer type hold. The random variables $\xi_k^{(1)}$, $k=1,2,\dots$, are assumed to have lattice distributions. The method used in this study is similar to [1].
Received: 06.09.1963
Citation:
A. A. Borovkov, B. A. Rogozin, “Boundary Problems in Some Two-Dimensional Random Walks”, Teor. Veroyatnost. i Primenen., 9:3 (1964), 401–430; Theory Probab. Appl., 9:3 (1964), 361–388
Linking options:
https://www.mathnet.ru/eng/tvp390 https://www.mathnet.ru/eng/tvp/v9/i3/p401
|
Statistics & downloads: |
Abstract page: | 418 | Full-text PDF : | 199 | First page: | 1 |
|