Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 3, Pages 401–430 (Mi tvp390)  

This article is cited in 18 scientific papers (total in 18 papers)

Boundary Problems in Some Two-Dimensional Random Walks

A. A. Borovkova, B. A. Rogozinb

a Novosibirsk
b Novosibirsk
Abstract: Let $\xi _1^{(i)},\xi_2^{(i)},\dots$, $i=1,2$, be two sequences of independent random variables, $\xi_k^{(2)}>0$, $k=1,2,\dots$, $s_0^{(i)}=0$, $s_n^{(i)}=\sum\nolimits_{k=1}^n{\xi_k^{(i)}}$, $i=1,2$, $\bar s_n=\max_{0\leqq k\leqq n}s_k^{(1)}$, $\eta_t=\max\{{k:s_k^{(2)}<t}\}$. We study the joint distribution of the random variables $\bar s_{\eta_t}$, $s_{\eta_t+1}^{(1)}$, $s_{\eta_t+1}^{(2)}$ including asymptotic expansions, and all the domains of deviations in which limit theorems of Cramer type hold. The random variables $\xi_k^{(1)}$, $k=1,2,\dots$, are assumed to have lattice distributions. The method used in this study is similar to [1].
Received: 06.09.1963
English version:
Theory of Probability and its Applications, 1964, Volume 9, Issue 3, Pages 361–388
DOI: https://doi.org/10.1137/1109055
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, B. A. Rogozin, “Boundary Problems in Some Two-Dimensional Random Walks”, Teor. Veroyatnost. i Primenen., 9:3 (1964), 401–430; Theory Probab. Appl., 9:3 (1964), 361–388
Citation in format AMSBIB
\Bibitem{BorRog64}
\by A.~A.~Borovkov, B.~A.~Rogozin
\paper Boundary Problems in Some Two-Dimensional Random Walks
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 3
\pages 401--430
\mathnet{http://mi.mathnet.ru/tvp390}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=169299}
\zmath{https://zbmath.org/?q=an:0203.17602}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 3
\pages 361--388
\crossref{https://doi.org/10.1137/1109055}
Linking options:
  • https://www.mathnet.ru/eng/tvp390
  • https://www.mathnet.ru/eng/tvp/v9/i3/p401
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :199
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024