Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 3, Pages 513–534
DOI: https://doi.org/10.4213/tvp3899
(Mi tvp3899)
 

On Central Limit Theorems for Vector Random Measures and Measure-Valued Processes

Z. G. Su

Hangzhou University, Department of Mathematics
Abstract: Let $B$ be a separable Banach space. Suppose that ($F,F_i,\,i\ge 1$) is a sequence of independent identically distributed (i.i.d.) and symmetrical independently scattered (s.i.s.) $B$-valued random measures. We first establish the central limit theorem for $Y_n=\frac 1{\sqrt n} \sum_{i=1}^nF_i$ by taking the viewpoint of random linear functionals on Schwartz distribution spaces. Then, let ($X,X_i,\,i\ge 1$) be a sequence of i.i.d. symmetric $B$-valued random vectors and ($B,B_i,\,i\ge 1$) a sequence of independent standard Brownian motions on [0,1] independent of ($X,X_i,\,i\ge 1$). The central limit theorem for measure-valued processes $Z_n(t)=\frac 1{\sqrt n} \sum_{i=1}^nX_i\delta_{B_i(t)}$, $t\in [0,1]$, will be investigated in the same frame. Our main results concerning $Y_n$ differ from D. H. Thang's [Probab. Theory Related Fields, 88 (1991), pp. 1–16] in that we take into account $F$ as a whole; while the results related to $Z_n$ are extensions of I. Mitoma [Ann. Probab., 11 (1983), pp. 989–999] to random weighted mass.
Keywords: central limit theorems, Gaussian processes, random vector measures, Schwartz spaces.
Received: 16.09.1997
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 3, Pages 448–468
DOI: https://doi.org/10.1137/S0040585X97979111
Bibliographic databases:
Language: English
Citation: Z. G. Su, “On Central Limit Theorems for Vector Random Measures and Measure-Valued Processes”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 513–534; Theory Probab. Appl., 46:3 (2002), 448–468
Citation in format AMSBIB
\Bibitem{Su01}
\by Z.~G.~Su
\paper On Central Limit Theorems for Vector Random Measures and Measure-Valued Processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 513--534
\mathnet{http://mi.mathnet.ru/tvp3899}
\crossref{https://doi.org/10.4213/tvp3899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978666}
\zmath{https://zbmath.org/?q=an:1033.60031}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 448--468
\crossref{https://doi.org/10.1137/S0040585X97979111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700005}
Linking options:
  • https://www.mathnet.ru/eng/tvp3899
  • https://doi.org/10.4213/tvp3899
  • https://www.mathnet.ru/eng/tvp/v46/i3/p513
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :150
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024