Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 3, Pages 498–512
DOI: https://doi.org/10.4213/tvp3898
(Mi tvp3898)
 

This article is cited in 7 scientific papers (total in 7 papers)

Convex Minorants of Random Walks and Brownian Motion

T. M. Suidan

Princeton University
Abstract: Let $(S_{i})_{i=0}^n$ be the random walk process generated by a sequence of real-valued independent identically distributed random variables $(X_{i})_{i=1}^n$ having densities. We study probability distributions related to the associated convex minorant process. In particular, we investigate the length of a convex minorant's longest segment. Using random permutation theory, we fully characterize the probability distribution of the length of the $r$th longest segment of the convex minorant generated by Brownian motion on finite intervals; we also give an explicit density for the joint distributions of the first $r$ longest segments. In addition, we use the methods developed here to prove Sparre Andersen's formula for the probability of having $m$ segments composing the convex minorant of a random walk of length $N$. We describe analogous statements for random walks with random time increments. The author has recently used these results to solve a problem of adhesion dynamics on the line.
Keywords: random walk, convex minorant, Brownian motion, random permutations.
Received: 12.02.2001
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 3, Pages 469–481
DOI: https://doi.org/10.1137/S0040585X9797910X
Bibliographic databases:
Language: English
Citation: T. M. Suidan, “Convex Minorants of Random Walks and Brownian Motion”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 498–512; Theory Probab. Appl., 46:3 (2002), 469–481
Citation in format AMSBIB
\Bibitem{Sui01}
\by T.~M.~Suidan
\paper Convex Minorants of Random Walks and Brownian Motion
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 498--512
\mathnet{http://mi.mathnet.ru/tvp3898}
\crossref{https://doi.org/10.4213/tvp3898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978665}
\zmath{https://zbmath.org/?q=an:1034.60050}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 469--481
\crossref{https://doi.org/10.1137/S0040585X9797910X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700006}
Linking options:
  • https://www.mathnet.ru/eng/tvp3898
  • https://doi.org/10.4213/tvp3898
  • https://www.mathnet.ru/eng/tvp/v46/i3/p498
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :168
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024