|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 2, Pages 382–386
(Mi tvp386)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Optimum Factorization of the Non-negative Matrix Functions
Yu. L. Šmul'yan Odessa
Abstract:
The proposition about optimum factorization of a non-negative matrix function $f(\lambda)$ is generalized for the case where the unknown function $A(z)$ of class $H_2$ satisfies the inequality
$$
A(e^{-i\lambda})A^*(e^{-i\lambda})\leqq 2\pi f(\lambda)
$$
instead of the usual equality
$$
A(e^{-i\lambda})A^*(e^{-i\lambda})=2\pi f(\lambda).
$$
Received: 18.05.1962
Citation:
Yu. L. Šmul'yan, “Optimum Factorization of the Non-negative Matrix Functions”, Teor. Veroyatnost. i Primenen., 9:2 (1964), 382–386; Theory Probab. Appl., 9:2 (1964), 346–350
Linking options:
https://www.mathnet.ru/eng/tvp386 https://www.mathnet.ru/eng/tvp/v9/i2/p382
|
|