Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 4, Pages 812–820 (Mi tvp3856)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

Canonical spectral equation

V. L. Girko

National Taras Shevchenko University of Kyiv, The Faculty of Cybernetics
Full-text PDF (433 kB) Citations (3)
Abstract: We consider a sequence of symmetric real-valued random matrices $\Xi _n = (\xi _{ij}^{(n)} )_{i,j = 1}^n ,n = 1,2, \ldots $, whose entries $\xi _{ij}^{(n)}$ ,$i \ge j$,$i,j = 1, \ldots ,n,$, are independent for each $n$, whereas $\mathbf{E}\xi _{ij}^{(n)} = a_{ij}^{(n)} ,\operatorname{Var}\xi _{ij}^{(n)} = \sigma _{ij}^{(n)}$, $i \ge j$, $i,j = 1, \ldots ,n,$
$$ \sup_n\max_{i = 1, \ldots ,n} \sum_{j = 1}^n {\sigma _{ij}^{(n)} < \infty} ,\qquad \sup_n\max_{i = 1, \ldots ,n} \sum_{j = 1}^n {| {a_{ij}^{(n)} }| < \infty ,} $$
and the Lindeberg condition is satisfied for these entries: for any $\tau > 0$,
$$ \lim_{n \to \infty }\max _{i = 1, \ldots ,n} \sum_{j = 1}^n {\mathbf{E}[ {\xi _{ij}^{(n)} - a_{ij}^{(n)} } ]^2 \chi \{ {|\xi _{ij}^{(n)} - a_{ij}^{(n)} | > \tau }\} = 0.} $$
We prove that $p\lim _{n \to \infty } \sup _x |\mu _n (x) - F_n (x)| = 0$, where $\mu _n (x) = n^{ - 1} \Sigma _{k = 1}^n \chi (\omega :\lambda _k < x),\lambda _1 \ge \cdots \ge \lambda _n $ are the eigenvalues of the random matrix $\Xi _n = (\xi _{ij}^{(n)} )_{i,j = 1}^n ,F_n (x)$ are distribution functions, the Stieltjes transforms of which are equal to
$$ \int {(x - z)^{ - 1} dF_n (x) = n^{ - 1} \sum_{i = 1}^n {c_i (z),\quad z = t + is,\quad s \ne 0,} } $$
and the functions $c_i (z)$ satisfy the system of equations
$$ c_i (z) = \left\{ {\left[ {A - zI_n - \delta _{pl} \sum_{s = 1}^n {c_s (z)\sigma _{sl}^{(n)} } } \right]^{ - 1} } \right\}_{ii} ,\quad i = 1, \ldots ,n, $$
where $\delta _{pl} $ is the Kronecker symbol, $A_n = (a_{ij}^{(n)} )_{i,j = 1}^n ,I_n $ is the identity matrix of the $n$th order.
Keywords: spectral functions of random matrices, Stieltjes transform, canonical spectral equation, symmetric real-valued random matrices, Lindeberg condition, eigenvalues of a random matrix.
Received: 09.04.1992
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 4, Pages 685–691
DOI: https://doi.org/10.1137/1139054
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. L. Girko, “Canonical spectral equation”, Teor. Veroyatnost. i Primenen., 39:4 (1994), 812–820; Theory Probab. Appl., 39:4 (1994), 685–691
Citation in format AMSBIB
\Bibitem{Gir94}
\by V.~L.~Girko
\paper Canonical spectral equation
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 4
\pages 812--820
\mathnet{http://mi.mathnet.ru/tvp3856}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347655}
\zmath{https://zbmath.org/?q=an:0840.60011}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 4
\pages 685--691
\crossref{https://doi.org/10.1137/1139054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TR71500014}
Linking options:
  • https://www.mathnet.ru/eng/tvp3856
  • https://www.mathnet.ru/eng/tvp/v39/i4/p812
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :50
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024