Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 4, Pages 743–765 (Mi tvp3851)  

This article is cited in 1 scientific paper (total in 1 paper)

Itô formula for an extended stochastic integral with nonanticipating kernel

N. V. Norin

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Abstract: Let $U_t =\int _0^1 u_s \mu (t,s)\delta W_s $ be an extended stochastic integral with a nonrandom anticipating kernel $\mu ( \,\cdot\, {,}\, \cdot\, )$. This paper gives the conditions of continuity for the process $U_t $ (§ 3), computes the quadratic variation (§ 4), and proves the Itô formula (§ 5) from which the formula for Brownian partial derivatives is deduced. With the help of the established Ito formula the probabilistic solution of some integro-differential equation is obtained (Example 3).
Keywords: extended stochastic integral with anticipating kernel, quadratic variation, Itô formula, randomized time.
Received: 25.01.1991
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 4, Pages 573–592
DOI: https://doi.org/10.1137/1139044
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Norin, “Itô formula for an extended stochastic integral with nonanticipating kernel”, Teor. Veroyatnost. i Primenen., 39:4 (1994), 743–765; Theory Probab. Appl., 39:4 (1994), 573–592
Citation in format AMSBIB
\Bibitem{Nor94}
\by N.~V.~Norin
\paper Itô formula for an extended stochastic integral with nonanticipating kernel
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 4
\pages 743--765
\mathnet{http://mi.mathnet.ru/tvp3851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347650}
\zmath{https://zbmath.org/?q=an:0845.60049}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 4
\pages 573--592
\crossref{https://doi.org/10.1137/1139044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TR71500004}
Linking options:
  • https://www.mathnet.ru/eng/tvp3851
  • https://www.mathnet.ru/eng/tvp/v39/i4/p743
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :387
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024