Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 2, Pages 378–382 (Mi tvp385)  

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

The Cauchy Problem for Quasilinear Parabolic Equations in the Degerate Case

Yu. N. Blagoveščenskiĭ

Moscow
Full-text PDF (296 kB) Citations (5)
Abstract: In this paper we consider the differential properties of the solution to the Cauchy problem for the quasilinear parabolic equation begin{equation} \qquad\frac{\partial v}{\partial t}=\frac12\sum_{i,j=1}^n c_{ij}(t,x,v)\frac{\partial^2v}{\partial x_i\partial x_i}+\sum_{i=1}^na_i(t,x,v)\frac{\partial v}{\partial x_i}, \tag{1} \end{equation} where $c_{ij}=\sum_{k=1}^nb_{ik}(t,x,v)b_{jk}(t,x,v)$. Let class $C_T^{m,\gamma}$ be a class of continuous functions, which has bounded space derivatives up to the $m$-th order, and its $m$-th derivative is Hölder continuous with Hölder constant $\gamma$. It is proved in this paper that if
$$ \{b(t,x,v),a(t,x,v),\psi (x)\}\in C_T^{m,\gamma},\qquad m\geqq 2, $$
then $v\in C_{t_0}^{m,\gamma}$, where $t_0>0$ depends only on the constants of class $C_T^{m,\gamma}$. If $n=1$, $a(t,x,v)\equiv 0$, then the above assertion will follow for all $t\in [0,T]$ and $x\in(-\infty,\infty)$. It is noted that $b(t,x,v)$ may be any degenerate matrix. These assertions are proved by the method of diffusion processes.
Received: 17.04.1963
English version:
Theory of Probability and its Applications, 1964, Volume 9, Issue 2, Pages 342–346
DOI: https://doi.org/10.1137/1109050
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. N. Blagoveščenskiǐ, “The Cauchy Problem for Quasilinear Parabolic Equations in the Degerate Case”, Teor. Veroyatnost. i Primenen., 9:2 (1964), 378–382; Theory Probab. Appl., 9:2 (1964), 342–346
Citation in format AMSBIB
\Bibitem{Bla64}
\by Yu.~N.~Blagove{\v s}{\v{c}}enski{\v\i}
\paper The Cauchy Problem for Quasilinear Parabolic Equations in the Degerate Case
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 2
\pages 378--382
\mathnet{http://mi.mathnet.ru/tvp385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=168935}
\zmath{https://zbmath.org/?q=an:0132.38302}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 2
\pages 342--346
\crossref{https://doi.org/10.1137/1109050}
Linking options:
  • https://www.mathnet.ru/eng/tvp385
  • https://www.mathnet.ru/eng/tvp/v9/i2/p378
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024