Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 3, Pages 635–640 (Mi tvp3839)  

This article is cited in 38 scientific papers (total in 38 papers)

Short Communications

No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison–Pliska theorem

Yu. M. Kabanova, D. O. Kramkovb

a Central Economics and Mathematics Institute, RAS
b Steklov Mathematical Institute, Russian Academy of Sciences
Abstract: We give a new proof of a key result to the theorem that in the discrete-time stochastic model of a frictionless security market the absence of arbitrage possibilities is equivalent to the existence of a probability measure $Q$ which is absolute continuous with respect to the basic probability measure $P$ with the strictly positive and bounded density and such that all security prices are martingales with respect to $Q$. The proof is elementary in a sense that it does not involve a measurable selection theorem.
Keywords: security market, no-arbitrage, equivalent martingale measure.
Received: 02.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 3, Pages 523–527
DOI: https://doi.org/10.1137/1139038
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Kabanov, D. O. Kramkov, “No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison–Pliska theorem”, Teor. Veroyatnost. i Primenen., 39:3 (1994), 635–640; Theory Probab. Appl., 39:3 (1994), 523–527
Citation in format AMSBIB
\Bibitem{KabKra94}
\by Yu.~M.~Kabanov, D.~O.~Kramkov
\paper No-arbitrage and equivalent martingale measures: an elementary proof of the Harrison--Pliska theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 3
\pages 635--640
\mathnet{http://mi.mathnet.ru/tvp3839}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347191}
\zmath{https://zbmath.org/?q=an:0834.60045}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 3
\pages 523--527
\crossref{https://doi.org/10.1137/1139038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TF06800013}
Linking options:
  • https://www.mathnet.ru/eng/tvp3839
  • https://www.mathnet.ru/eng/tvp/v39/i3/p635
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:788
    Full-text PDF :259
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024