|
Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 3, Pages 627–635
(Mi tvp3838)
|
|
|
|
Short Communications
On amarts with continuous time
I. A. Dzhvarsheishvili Georgian Technical University
Abstract:
We introduce a notion of a $D_v$-amart into consideration, which generalizes a notion of a martingale. For stochastic processes $(X_t(\omega))_{t\ge 0}$, which are $D_v$-amarts, we obtain sample properties of their trajectories such as the existence of
$$
\lim_{t\uparrow\tau(\omega)}X_t(\omega), \qquad \lim_{t\downarrow\tau(\omega)}X_t(\omega),
$$
where $\tau=\tau(\omega)$ are some or other stopping times, and the existence of modifications with right-continuous trajectories.
Keywords:
martingales, amarts, $D_v$-amarts, modifications, stopping times.
Received: 13.02.1990
Citation:
I. A. Dzhvarsheishvili, “On amarts with continuous time”, Teor. Veroyatnost. i Primenen., 39:3 (1994), 627–635; Theory Probab. Appl., 39:3 (1994), 512–519
Linking options:
https://www.mathnet.ru/eng/tvp3838 https://www.mathnet.ru/eng/tvp/v39/i3/p627
|
|