Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 3, Pages 588–604 (Mi tvp3821)  

This article is cited in 2 scientific papers (total in 2 papers)

Continual analogues of random polynomials that are orthogonal on a circle

A. V. Teplyaev

Saint-Petersburg, Russia
Full-text PDF (917 kB) Citations (2)
Abstract: The paper obtains conditions providing absolute continuity almost surely for the spectral measure of the corresponding random differential operators for a class of canonical systems of ordinary differential equations with random coefficients. Estimates for the densities of the spectral measures are given. Corollaries corresponding to the deterministic case are formulated. Systems of stochastic differential equations with similar properties are considered.
Keywords: random ordinary differential operator, spectral measure, absolutely continuous spectrum, Krein's canonical differential system, stochastic differential equation.
Received: 05.03.1991
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 3, Pages 476–489
DOI: https://doi.org/10.1137/1139033
Bibliographic databases:
Language: Russian
Citation: A. V. Teplyaev, “Continual analogues of random polynomials that are orthogonal on a circle”, Teor. Veroyatnost. i Primenen., 39:3 (1994), 588–604; Theory Probab. Appl., 39:3 (1994), 476–489
Citation in format AMSBIB
\Bibitem{Tep94}
\by A.~V.~Teplyaev
\paper Continual analogues of random polynomials that are orthogonal on a~circle
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 3
\pages 588--604
\mathnet{http://mi.mathnet.ru/tvp3821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347187}
\zmath{https://zbmath.org/?q=an:0832.60071}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 3
\pages 476--489
\crossref{https://doi.org/10.1137/1139033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TF06800008}
Linking options:
  • https://www.mathnet.ru/eng/tvp3821
  • https://www.mathnet.ru/eng/tvp/v39/i3/p588
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :56
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024