Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 3, Pages 513–529 (Mi tvp3817)  

This article is cited in 3 scientific papers (total in 3 papers)

A local limit theorem for nonhomogeneous random walk on a lattice

E. A. Zhizhinaa, R. A. Minlosb

a Moscow Power Engineering Institute
b Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (778 kB) Citations (3)
Abstract: In this paper, we study the walk of a particle on the $\nu$-dimensional lattice $\mathbf{Z}^\nu$, $\nu=1,2,3$, of which the one-step transition probabilities $\mathbf{Pr}(y\to x)$ differ from those of the homogeneous symmetric walk only in a finite neighborhood of the point $x=0$. For such a walk, the main term (having the order $O(1/t^{\nu/2})$) of the asymptotics of the probability $\mathbf{Pr}(x_t=x\mid x_0=y)$ as $t\to\infty$ is studied, $x,y\in\mathbf{Z}^\nu$, $x_t$ being the position of the particle at time $t$. It turns out that, for $\nu=2,3$, this main term of the asymptotics differs from the corresponding term of the asymptotics for the homogeneous walk (which has a usual Gaussian form) by a quantity of the order $O(t^{t-\nu/2}(|y|+1)^{-(\nu-1)/2})$. Thus the correction to the Gaussian term is comparable with it only in a finite neighborhood of the origin. In the case $\nu=1$, this correction has the form
$$ \frac{\mathrm{const}}{\sqrt t}\biggl(\operatorname{sign}y\exp\biggl\{-\frac{\mathrm{const}}t(|x|+|y|)^2\biggr\}+O\biggl(\frac 1{|y|}\biggr)\biggr), $$
i.e., remains of the same order as the Gaussian term on distances $|y|\sim\sqrt t$. The proof of these results is obtained by a detailed study of the structure of the resolvent $(\mathcal{T}-zE)^{-1}$ of the stochastic operator $\mathcal{T}$ of our model for $z$ lying in a small neighborhood of the point $z=1$ (the right boundary of the continuous spectrum of $\mathcal{T}$).
Keywords: symmetric homogeneous walk on a lattice, Gaussian distribution, stochastic operator and its resolvent, Fredholm formulas, Sokhotzkii formulas.
Received: 06.02.1991
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 3, Pages 490–503
DOI: https://doi.org/10.1137/1139034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Zhizhina, R. A. Minlos, “A local limit theorem for nonhomogeneous random walk on a lattice”, Teor. Veroyatnost. i Primenen., 39:3 (1994), 513–529; Theory Probab. Appl., 39:3 (1994), 490–503
Citation in format AMSBIB
\Bibitem{ZhiMin94}
\by E.~A.~Zhizhina, R.~A.~Minlos
\paper A~local limit theorem for nonhomogeneous random walk on a~lattice
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 3
\pages 513--529
\mathnet{http://mi.mathnet.ru/tvp3817}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347183}
\zmath{https://zbmath.org/?q=an:0837.60067}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 3
\pages 490--503
\crossref{https://doi.org/10.1137/1139034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TF06800009}
Linking options:
  • https://www.mathnet.ru/eng/tvp3817
  • https://www.mathnet.ru/eng/tvp/v39/i3/p513
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :85
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024