|
This article is cited in 5 scientific papers (total in 5 papers)
Lyapunov-Type Bounds for $U$-Statistics
I. B. Alberinka, V. Yu. Bentkusb a University of Nijmegen, Department of Mathematics
b Institute of Mathematics and Informatics
Abstract:
Let $X_1,\dots,X_n$ be independent identically distributed random variables. An optimal Lyapunov (or Berry–Esseen) bound is derived for $U$-statistics of degree 2, that is, statistics of the form $\sum_{j<k}H(X_j,X_k)$, where $H$ is a measurable, symmetric function such that $\mathbf{E}\,|H(X_1,X_2)|<\infty$, assuming that the statistic is nondegenerate.
Keywords:
$U$-statistics, Lyapunov-type bound, Berry–Esseen bound, rate of convergence, normal approximations.
Received: 26.01.2000
Citation:
I. B. Alberink, V. Yu. Bentkus, “Lyapunov-Type Bounds for $U$-Statistics”, Teor. Veroyatnost. i Primenen., 46:4 (2001), 724–743; Theory Probab. Appl., 46:4 (2002), 571–588
Linking options:
https://www.mathnet.ru/eng/tvp3797https://doi.org/10.4213/tvp3797 https://www.mathnet.ru/eng/tvp/v46/i4/p724
|
|