Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2002, Volume 47, Issue 4, Pages 780–787
DOI: https://doi.org/10.4213/tvp3782
(Mi tvp3782)
 

This article is cited in 4 scientific papers (total in 4 papers)

Short Communications

Estimate of the rate of convergence of probability distributions to a uniform distribution

A. A. Kulikova

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (677 kB) Citations (4)
Abstract: The paper considers sequences of random vectors in the Euclidean space $\mathbf{R}^s (s\ge2)$: $X_1,X_2,\dots,X_n,\dots,X_n=(X_{n1},\dots,X_{ns})$, $0\le X_{nj}\le 1$, $j=1,\ldots,s$.
A deviation of a distribution of the random vectors $X_n$ from a uniform distribution on a cube $[0,1]^s$ is evaluated in terms of mathematical expectations $\mathbf{E} e^{2\pi i(m,X_n)}$, where $m$ is a vector with integer-valued coordinates. If they decrease rapidly enough as $n\to\infty$ for any convex domain $D\subset[0,1]^s$, the value $|\mathbf{P}\{X_n\in D\}-\mathrm{vol}_s(D)|$ decreases as some positive order of $1/n$.
This work is a generalization of [A. Ya. Kuznetsova and A. A. Kulikova, Moscow Univ. Comput. Math. Cybernet., 2002, no. 3, pp. 35–43], in which $s=1$ was assumed.
Keywords: convergence of distributions, uniform distribution, summation Poisson formula.
Received: 22.07.2002
English version:
Theory of Probability and its Applications, 2003, Volume 47, Issue 4, Pages 693–699
DOI: https://doi.org/10.1137/S0040585X97980087
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Kulikova, “Estimate of the rate of convergence of probability distributions to a uniform distribution”, Teor. Veroyatnost. i Primenen., 47:4 (2002), 780–787; Theory Probab. Appl., 47:4 (2003), 693–699
Citation in format AMSBIB
\Bibitem{Kul02}
\by A.~A.~Kulikova
\paper Estimate of the rate of convergence of probability distributions to a uniform distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 4
\pages 780--787
\mathnet{http://mi.mathnet.ru/tvp3782}
\crossref{https://doi.org/10.4213/tvp3782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001793}
\zmath{https://zbmath.org/?q=an:1054.60027}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 4
\pages 693--699
\crossref{https://doi.org/10.1137/S0040585X97980087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187495600010}
Linking options:
  • https://www.mathnet.ru/eng/tvp3782
  • https://doi.org/10.4213/tvp3782
  • https://www.mathnet.ru/eng/tvp/v47/i4/p780
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024