Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2002, Volume 47, Issue 4, Pages 625–653
DOI: https://doi.org/10.4213/tvp3772
(Mi tvp3772)
 

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Heavy tails of jumps

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Let $X(k)=X(u,k)$, $k=0,1,\dots$, be a time-homogeneous real-valued ergodic Markov chain with initial value $u\equiv X(u,0)=X(0)$. We study the asymptotic behavior of the crossing probability of a given boundary $g(k)$, $k=0,1,\dots,n$, by a trajectory $X(k)$,
$$ \mathbf{P}\Bigl\{\max_{k\le n}(X(k)-g(k))>0\Bigr\}, $$
where the boundary $g$ depends, generally speaking, on $n$ and a growing parameter $x$ in such a way that $\min_{k\le n}g(k)\to\infty$ as $x\to\infty$. It is assumed that the distributions of the increments $\xi(u)=X(u,1)-u$ of the chain either have regularly varying tails or are majorized by such tails.
Limit theorems are obtained, describing the asymptotic behavior of the probabilities in question, under broad conditions in the domains of large and normal deviations, including theorems valid “uniformly on the real line,” and giving explicit forms of the right-hand sides. Asymptotic properties of the regeneration cycles to a positive atom are investigated for Harris recurrent Markov chains. An analogue of the law of the iterated logarithm is established.
Keywords: Markov chains, large deviations, boundary crossing, heavy tail, law of iterated logarithm, uniform limit theorem.
Received: 17.12.2001
English version:
Theory of Probability and its Applications, 2003, Volume 47, Issue 4, Pages 584–608
DOI: https://doi.org/10.1137/S0040585X97979986
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, “Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Heavy tails of jumps”, Teor. Veroyatnost. i Primenen., 47:4 (2002), 625–653; Theory Probab. Appl., 47:4 (2003), 584–608
Citation in format AMSBIB
\Bibitem{Bor02}
\by A.~A.~Borovkov
\paper Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Heavy tails of jumps
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 4
\pages 625--653
\mathnet{http://mi.mathnet.ru/tvp3772}
\crossref{https://doi.org/10.4213/tvp3772}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001783}
\zmath{https://zbmath.org/?q=an:1069.60057}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 4
\pages 584--608
\crossref{https://doi.org/10.1137/S0040585X97979986}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187495600002}
Linking options:
  • https://www.mathnet.ru/eng/tvp3772
  • https://doi.org/10.4213/tvp3772
  • https://www.mathnet.ru/eng/tvp/v47/i4/p625
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :181
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024