Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 211–222 (Mi tvp3771)  

This article is cited in 109 scientific papers (total in 109 papers)

Short Communications

Mean-variance Hedging of options on stocks with Markov volatilities

G. B. Di Masia, Yu. M. Kabanovb, W. J. Runggaldiera

a Universita di Padova, Dipartimento di Matematica Рurа ed Applicata, Padova, Italy
b Central Economics and Mathematics Institute, RAS
Abstract: We consider the problem of hedging an European call option for a diffusion model where drift and volatility are functions of a Markov jump process. The market is thus incomplete implying that perfect hedging is not possible. To derive a hedging strategy, we follow the approach based on the idea of hedging under a mean-variance criterion as suggested by Fцllmer, Sondermann, and Schweizer. This also leads to a generalization of the Black–Scholes formula for the corresponding option price which, for the simplest case when the jump process has only two states, is given by an explicit expression involving the distribution of the integrated telegraph signal (known also as the Kac process). In the Appendix we derive this distribution by simple considerations based on properties of the order statistics.
Keywords: Black–Scholes formula, call option, stochastic volatility, incomplete market, meanvariance hedging, Kac process.
Received: 05.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 1, Pages 172–182
DOI: https://doi.org/10.1137/1139008
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. B. Di Masi, Yu. M. Kabanov, W. J. Runggaldier, “Mean-variance Hedging of options on stocks with Markov volatilities”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 211–222; Theory Probab. Appl., 39:1 (1994), 172–182
Citation in format AMSBIB
\Bibitem{Di KabRun94}
\by G.~B.~Di Masi, Yu.~M.~Kabanov, W.~J.~Runggaldier
\paper Mean-variance Hedging of options on stocks with Markov volatilities
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 211--222
\mathnet{http://mi.mathnet.ru/tvp3771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348196}
\zmath{https://zbmath.org/?q=an:0836.60075}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 172--182
\crossref{https://doi.org/10.1137/1139008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800008}
Linking options:
  • https://www.mathnet.ru/eng/tvp3771
  • https://www.mathnet.ru/eng/tvp/v39/i1/p211
  • This publication is cited in the following 109 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:770
    Full-text PDF :177
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024