Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 201–211 (Mi tvp3767)  

This article is cited in 24 scientific papers (total in 24 papers)

Short Communications

Integral option

D. O. Kramkova, É. Mordeckib

a Steklov Mathematical Institute, Russian Academy of Sciences
b Facultad de Ingenieria, Montevideo, Uruguay
Abstract: In the context of diffusion model of the $(B,S)$-market consisting of two assets: riskless bank account $B=(B_t)_{t\ge 0}$ and risky stock $S=(S_t)_{t\ge 0}$ described by (1.1) and (1.2) we consider the option of American type with payment function of “integral type” $f=(f_t)_{t\ge 0}$:
$$ f_t=e^{-\lambda t}\left[\int_0^t S^u\,du+s\psi_0\right]. $$
The paper solves the problem of definition of the fair price of the integral option under consideration. The structure of the expiration time is also described.
Keywords: Black and Scholes model of $(B,S)$-market American option, integral option, Asian option, optimal stopping time, Kummer's functions, rational time.
Received: 05.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 1, Pages 162–172
DOI: https://doi.org/10.1137/1139007
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. O. Kramkov, É. Mordecki, “Integral option”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 201–211; Theory Probab. Appl., 39:1 (1994), 162–172
Citation in format AMSBIB
\Bibitem{KraMor94}
\by D.~O.~Kramkov, \'E.~Mordecki
\paper Integral option
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 201--211
\mathnet{http://mi.mathnet.ru/tvp3767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348195}
\zmath{https://zbmath.org/?q=an:0836.90012}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 162--172
\crossref{https://doi.org/10.1137/1139007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800007}
Linking options:
  • https://www.mathnet.ru/eng/tvp3767
  • https://www.mathnet.ru/eng/tvp/v39/i1/p201
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024