|
Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 201–211
(Mi tvp3767)
|
|
|
|
This article is cited in 24 scientific papers (total in 24 papers)
Short Communications
Integral option
D. O. Kramkova, É. Mordeckib a Steklov Mathematical Institute, Russian Academy of Sciences
b Facultad de Ingenieria, Montevideo, Uruguay
Abstract:
In the context of diffusion model of the $(B,S)$-market consisting of two assets: riskless bank account $B=(B_t)_{t\ge 0}$ and risky stock $S=(S_t)_{t\ge 0}$ described by (1.1) and (1.2) we consider the option of American type with payment function of “integral type” $f=(f_t)_{t\ge 0}$:
$$
f_t=e^{-\lambda t}\left[\int_0^t S^u\,du+s\psi_0\right].
$$
The paper solves the problem of definition of the fair price of the integral option under consideration. The structure of the expiration time is also described.
Keywords:
Black and Scholes model of $(B,S)$-market American option, integral option, Asian option, optimal stopping time, Kummer's functions, rational time.
Received: 05.07.1993
Citation:
D. O. Kramkov, É. Mordecki, “Integral option”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 201–211; Theory Probab. Appl., 39:1 (1994), 162–172
Linking options:
https://www.mathnet.ru/eng/tvp3767 https://www.mathnet.ru/eng/tvp/v39/i1/p201
|
|