Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1994, Volume 39, Issue 1, Pages 80–129 (Mi tvp3763)  

This article is cited in 61 scientific papers (total in 61 papers)

Toward the theory of pricing of options of both European and American types. II. Continuous time

A. N. Shiryaeva, Yu. M. Kabanovb, D. O. Kramkova, A. V. Melnikova

a Steklov Mathematical Institute, Russian Academy of Sciences
b Central Economics and Mathematics Institute, RAS
Abstract: In the first part of the paper [29] the options pricing theory was developed under the assumption that a $(B,S)$-market is discrete (in space and in time). It is assumed in the present text that a $(B,S)$-market is operating continuously in time. The riskless bank account $B=(B_t)_{t\ge 0}$ is evolving according to the “compound interests” formula (1.1), and a risky stock price $S=(S_t)_{t\ge 0}$ is governed by geometric Brownian motion (1.4). The “martingale” pricing theory is presented for fair (rational) option price, hedging strategies, and rational expiration times. The Black-Scholes formula for a standard European call option is derived. The paper considers a number of other particular examples of European as well as American options.
Keywords: risky and riskless securities, options, hedging strategies, geometric (economic) Brownian motion, standard and exotic options, Black–Scholes formula, put-call parity, martingale and dual martingale measures.
Received: 05.07.1993
English version:
Theory of Probability and its Applications, 1994, Volume 39, Issue 1, Pages 61–102
DOI: https://doi.org/10.1137/1139003
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Shiryaev, Yu. M. Kabanov, D. O. Kramkov, A. V. Melnikov, “Toward the theory of pricing of options of both European and American types. II. Continuous time”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 80–129; Theory Probab. Appl., 39:1 (1994), 61–102
Citation in format AMSBIB
\Bibitem{ShiKabKra94}
\by A.~N.~Shiryaev, Yu.~M.~Kabanov, D.~O.~Kramkov, A.~V.~Melnikov
\paper Toward the theory of pricing of options of both European and American types.~II. Continuous time
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 80--129
\mathnet{http://mi.mathnet.ru/tvp3763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1348191}
\zmath{https://zbmath.org/?q=an:0833.60065}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 61--102
\crossref{https://doi.org/10.1137/1139003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RH52800003}
Linking options:
  • https://www.mathnet.ru/eng/tvp3763
  • https://www.mathnet.ru/eng/tvp/v39/i1/p80
    Cycle of papers
    This publication is cited in the following 61 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024