|
This article is cited in 21 scientific papers (total in 21 papers)
On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements
T.-C. Hua, D. Lib, A. Rosalskyc, A. I. Volodind a National Tsing Hua University, Department of Mathematics
b Lakehead University
c University of Florida
d Kazan State University
Abstract:
By applying a recent result of Hu et al. [Stochastic Anal. Appl., 17 (1999), pp. 963–992], we extend and generalize the complete convergence results of Pruitt [J. Math. Mech., 15 (1966), pp. 769–776] and Rohatgi [Proc. Cambridge Philos. Soc., 69 (1971), pp. 305–307] to arrays of row-wise independent Banach space valued random elements. No assumptions are made concerning the geometry of the underlying Banach space. Illustrative examples are provided comparing the various results.
Keywords:
array of Banach space valued random elements, row-wise independence, weighted sums, complete convergence, rate of convergence, almost sure convergence.
Received: 26.10.1999
Citation:
T.-C. Hu, D. Li, A. Rosalsky, A. I. Volodin, “On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements”, Teor. Veroyatnost. i Primenen., 47:3 (2002), 533–547; Theory Probab. Appl., 47:3 (2003), 455–468
Linking options:
https://www.mathnet.ru/eng/tvp3691https://doi.org/10.4213/tvp3691 https://www.mathnet.ru/eng/tvp/v47/i3/p533
|
|