Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 2, Pages 205–222 (Mi tvp369)  

This article is cited in 20 scientific papers (total in 20 papers)

Equicontinuous Markov Operators

M. Rosenblatt

Brown University
Abstract: In the paper we study limit properties of equicontinuous (nearly periodic) positive operators which transform continuous functions into continuous ones. The domain of definition of the functions is a compact Hausdorff space $X$. Section 1 contains some preliminary information. In Section 2, positive Markov operators are considered. A decomposition of part of the space $X$ into ergodic sub-parts is obtained, which is analogous to the decomposition of Krylov and Bogolyubov. In the next section eigenfunctions of positive operators are studied which correspond to eigenvalues with maximal absolute values. The theory of Perron-Frobenius is generalized to the situation considered. Section 4 is devoted to the investigation of the asymptotic behavior of the powers $T^n$ of Markov transition operators. Finally, in Section 5, we consider the asymptotic behavior of the convolutions $\nu^n$, $n=1,2,\cdots$, of a regular measure on a compact topological subgroup. Some results obtained in the previous sections are used for the study of this question.
Received: 20.11.1963
English version:
Theory of Probability and its Applications, 1964, Volume 9, Issue 2, Pages 180–197
DOI: https://doi.org/10.1137/1109033
Bibliographic databases:
Language: English
Citation: M. Rosenblatt, “Equicontinuous Markov Operators”, Teor. Veroyatnost. i Primenen., 9:2 (1964), 205–222; Theory Probab. Appl., 9:2 (1964), 180–197
Citation in format AMSBIB
\Bibitem{Ros64}
\by M.~Rosenblatt
\paper Equicontinuous Markov Operators
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 2
\pages 205--222
\mathnet{http://mi.mathnet.ru/tvp369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=171318}
\zmath{https://zbmath.org/?q=an:0133.40101}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 2
\pages 180--197
\crossref{https://doi.org/10.1137/1109033}
Linking options:
  • https://www.mathnet.ru/eng/tvp369
  • https://www.mathnet.ru/eng/tvp/v9/i2/p205
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :255
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024