|
This article is cited in 21 scientific papers (total in 21 papers)
Limit behavior of the “horizontal-vertical” random walk and some extensions of the Donsker–Prokhorov invariance principle
A. S. Chernya, A. N. Shiryaevb, M. Yorc a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Steklov Mathematical Institute, Russian Academy of Sciences
c Université Pierre & Marie Curie, Paris VI
Abstract:
We consider a two-dimensional random walk that moves in the horizontal direction on the half-plane $\{y>x\}$ and in the vertical direction on the half-plane $\{y\le x\}$. The limit behavior (as the time interval between two steps and the size of each step tend to zero) of this “horizontal-vertical” random walk is investigated. In order to solve this problem, we prove an extension of the Donsker–Prokhorov invariance principle. The extension states that the discrete-time stochastic integrals with respect to the appropriately renormalized one-dimensional random walk converge in distribution to the corresponding stochastic integral with respect to a Brownian motion. This extension enables us to construct a discrete-time approximation of the local time of a Brownian motion. We also provide discrete-time approximations of skew Brownian motions.
Keywords:
limit theorems for degenerate processes, Donsker–Prokhorov invariance principle, local time of Brownian motion, skew Brownian motions, Skorokhod embedding problem.
Received: 30.08.2001
Citation:
A. S. Cherny, A. N. Shiryaev, M. Yor, “Limit behavior of the “horizontal-vertical” random walk and some extensions of the Donsker–Prokhorov invariance principle”, Teor. Veroyatnost. i Primenen., 47:3 (2002), 498–517; Theory Probab. Appl., 47:3 (2003), 377–394
Linking options:
https://www.mathnet.ru/eng/tvp3689https://doi.org/10.4213/tvp3689 https://www.mathnet.ru/eng/tvp/v47/i3/p498
|
|