Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2002, Volume 47, Issue 3, Pages 417–451
DOI: https://doi.org/10.4213/tvp3675
(Mi tvp3675)
 

This article is cited in 7 scientific papers (total in 7 papers)

Branching systems with long-living particles at the critical dimension

A. Wakolbingera, V. A. Vatutinb, K. Fleischmannc

a Johann Wolfgang Goethe-Universität, Fachbereich Mathematik
b Steklov Mathematical Institute, Russian Academy of Sciences
c Weierstrass Institute for Applied Analysis and Stochastics
Abstract: A spatial branching process is considered in which particles have a lifetime law with a tail index smaller than one. It is shown that at the critical dimension, unlike classical branching particle systems the population does not suffer local extinction when started from a spatially homogeneous Poissonian initial population. In fact, persistent convergence to a mixed Poissonian particle system is shown. The random intensity of the limiting process is characterized in law by the random density in a space point of a related age-dependent superprocess at a fixed time. The proof relies on a refined study of the system starting from asymptotically large but finite initial populations.
Keywords: branching particle system, residual lifetime process, stable subordinator, critical dimension, limit theorem, long-living particles, absolute continuity, random density, superprocess, persistence, mixed Poissonian particle system.
Received: 30.01.2002
English version:
Theory of Probability and its Applications, 2003, Volume 47, Issue 3, Pages 429–454
DOI: https://doi.org/10.1137/S0040585X97979809
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Wakolbinger, V. A. Vatutin, K. Fleischmann, “Branching systems with long-living particles at the critical dimension”, Teor. Veroyatnost. i Primenen., 47:3 (2002), 417–451; Theory Probab. Appl., 47:3 (2003), 429–454
Citation in format AMSBIB
\Bibitem{WakVatFle02}
\by A.~Wakolbinger, V.~A.~Vatutin, K.~Fleischmann
\paper Branching systems with long-living particles at the critical dimension
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 3
\pages 417--451
\mathnet{http://mi.mathnet.ru/tvp3675}
\crossref{https://doi.org/10.4213/tvp3675}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1975423}
\zmath{https://zbmath.org/?q=an:1036.60074}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 3
\pages 429--454
\crossref{https://doi.org/10.1137/S0040585X97979809}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185370300004}
Linking options:
  • https://www.mathnet.ru/eng/tvp3675
  • https://doi.org/10.4213/tvp3675
  • https://www.mathnet.ru/eng/tvp/v47/i3/p417
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024