|
Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 4, Pages 879–888
(Mi tvp3639)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Short Communications
On a global deviation measure for an estimate of the regression line
V. D. Konakov Moscow
Abstract:
Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random vectors with values in the Euclidean plane. We prove that the limiting distribution for a properly normalized quadratic functional
$$
\int(r(x)-\hat r_n(x))^2\hat h_n^2(x)p(x)\,dx
$$
is normal $(0,\sigma^2)$, where $r_n(x)$ is an estimate of the regression line $r(x)$ of the form (1). We obtain also the limiting distribution in case of a sequence of «local» alternatives of the form (7). Finally, for the rate of convergence of moments, we have
$$
|\nu_{n,2k}-\nu_{2k}|\le c_1(k,\sigma)n^{-\frac{1}{2}+\delta},\qquad
|\nu_{n,2k+1}|\le c_2(k,\sigma)n^{-\frac{1}{4}+\delta},
$$
where $c_1(k,\sigma)$ and $c_2(k,\sigma)$ are some constants which depend on the order $k$ of the moment and variance $\sigma^2$.
Received: 24.10.1975
Citation:
V. D. Konakov, “On a global deviation measure for an estimate of the regression line”, Teor. Veroyatnost. i Primenen., 22:4 (1977), 879–888; Theory Probab. Appl., 22:4 (1978), 858–868
Linking options:
https://www.mathnet.ru/eng/tvp3639 https://www.mathnet.ru/eng/tvp/v22/i4/p879
|
Statistics & downloads: |
Abstract page: | 192 | Full-text PDF : | 95 |
|