Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 4, Pages 879–888 (Mi tvp3639)  

This article is cited in 8 scientific papers (total in 8 papers)

Short Communications

On a global deviation measure for an estimate of the regression line

V. D. Konakov

Moscow
Abstract: Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random vectors with values in the Euclidean plane. We prove that the limiting distribution for a properly normalized quadratic functional
$$ \int(r(x)-\hat r_n(x))^2\hat h_n^2(x)p(x)\,dx $$
is normal $(0,\sigma^2)$, where $r_n(x)$ is an estimate of the regression line $r(x)$ of the form (1). We obtain also the limiting distribution in case of a sequence of «local» alternatives of the form (7). Finally, for the rate of convergence of moments, we have
$$ |\nu_{n,2k}-\nu_{2k}|\le c_1(k,\sigma)n^{-\frac{1}{2}+\delta},\qquad |\nu_{n,2k+1}|\le c_2(k,\sigma)n^{-\frac{1}{4}+\delta}, $$
where $c_1(k,\sigma)$ and $c_2(k,\sigma)$ are some constants which depend on the order $k$ of the moment and variance $\sigma^2$.
Received: 24.10.1975
English version:
Theory of Probability and its Applications, 1978, Volume 22, Issue 4, Pages 858–868
DOI: https://doi.org/10.1137/1122101
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. D. Konakov, “On a global deviation measure for an estimate of the regression line”, Teor. Veroyatnost. i Primenen., 22:4 (1977), 879–888; Theory Probab. Appl., 22:4 (1978), 858–868
Citation in format AMSBIB
\Bibitem{Kon77}
\by V.~D.~Konakov
\paper On a~global deviation measure for an estimate of the regression line
\jour Teor. Veroyatnost. i Primenen.
\yr 1977
\vol 22
\issue 4
\pages 879--888
\mathnet{http://mi.mathnet.ru/tvp3639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=483159}
\zmath{https://zbmath.org/?q=an:0391.62030}
\transl
\jour Theory Probab. Appl.
\yr 1978
\vol 22
\issue 4
\pages 858--868
\crossref{https://doi.org/10.1137/1122101}
Linking options:
  • https://www.mathnet.ru/eng/tvp3639
  • https://www.mathnet.ru/eng/tvp/v22/i4/p879
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024