|
Teoriya Veroyatnostei i ee Primeneniya, 1977, Volume 22, Issue 4, Pages 837–844
(Mi tvp3632)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
Short Communications
On the first exit time out of a semigroup in $R^m$ for a random walk
A. A. Mogul'skiĭ, E. A. Pečerskiĭ Novosibirsk
Abstract:
Let $(S_n)$ be a random walk generated by a sequence of random i. i. d. vectors $(\xi_n)$; $\xi_n\in R^m$. Let $H$ be a subset of $R^m$. In this paper, we study the random variable
$$
\eta=\eta_H=\min\{k\colon k\ge 1,S_k\notin H\}.
$$
Main results are obtained in the case when $H$ is a semi-group. For $|z|<1$ and $\lambda=(\lambda_1,\dots,\lambda_m)\in R^m$, we prove the formula
$$
\sum_{n=0}^{\infty}z^n\mathbf M(e^{i(\lambda,S_n)};\eta_H>n)=
\exp\biggl\{\sum_{n=1}^{\infty}\frac{z^n}{n}\mathbf M(e^{i(\lambda,S_n)};E_{0,n})\biggr\}
$$
where $E_{0,n}$ is the event: $n$ is not a ladder index for any of $n$ cyclical rearrangements of $\xi_1,\dots,\xi_n$.
We find some sufficient conditions for the uniqueness of a solution of the equation
$$
(1-z\Phi(\lambda))\psi_1(z,\lambda)=\psi_2(z,\lambda)
$$
where $\Phi(\lambda)=\mathbf M\exp\{i(\lambda,\xi_1)\}$.
Some estimates for the sequence $(\mathbf P(\eta_H>n))$ are also obtained.
Received: 22.03.1976
Citation:
A. A. Mogul'skiǐ, E. A. Pečerskiǐ, “On the first exit time out of a semigroup in $R^m$ for a random walk”, Teor. Veroyatnost. i Primenen., 22:4 (1977), 837–844; Theory Probab. Appl., 22:4 (1978), 818–825
Linking options:
https://www.mathnet.ru/eng/tvp3632 https://www.mathnet.ru/eng/tvp/v22/i4/p837
|
Statistics & downloads: |
Abstract page: | 221 | Full-text PDF : | 102 |
|