Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 3, Pages 476–495
DOI: https://doi.org/10.4213/tvp35
(Mi tvp35)
 

This article is cited in 8 scientific papers (total in 8 papers)

Approximation schemes for stochastic differential equations in Hilbert space

Yu. S. Mishura, G. M. Shevchenko

National Taras Shevchenko University of Kyiv
References:
Abstract: For solutions of Itô–Volterra equations and semilinear evolution-type equations we consider approximations via the Milstein scheme, approximations by finite-dimensional processes, and approximations by solutions of stochastic differential equations (SDEs) with bounded coefficients. We prove mean-square convergence for finite-dimensional approximations and establish results on the rate of mean-square convergence for two remaining types of approximation.
Keywords: stochastic differential equations in Hilbert space, discrete-time approximations, Milstein scheme, Itô–Volterra type equation.
Received: 29.09.2003
Revised: 14.04.2006
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 3, Pages 442–458
DOI: https://doi.org/10.1137/S0040585X97982487
Bibliographic databases:
Language: Russian
Citation: Yu. S. Mishura, G. M. Shevchenko, “Approximation schemes for stochastic differential equations in Hilbert space”, Teor. Veroyatnost. i Primenen., 51:3 (2006), 476–495; Theory Probab. Appl., 51:3 (2007), 442–458
Citation in format AMSBIB
\Bibitem{MisShe06}
\by Yu.~S.~Mishura, G.~M.~Shevchenko
\paper Approximation schemes for stochastic differential equations in Hilbert space
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 3
\pages 476--495
\mathnet{http://mi.mathnet.ru/tvp35}
\crossref{https://doi.org/10.4213/tvp35}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325541}
\zmath{https://zbmath.org/?q=an:1148.60044}
\elib{https://elibrary.ru/item.asp?id=9275435}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 3
\pages 442--458
\crossref{https://doi.org/10.1137/S0040585X97982487}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250344800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35348938145}
Linking options:
  • https://www.mathnet.ru/eng/tvp35
  • https://doi.org/10.4213/tvp35
  • https://www.mathnet.ru/eng/tvp/v51/i3/p476
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:601
    Full-text PDF :181
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024