|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 1, Pages 122–125
(Mi tvp349)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Topology in a Group and Convergence of Distributions
B. M. Kloss Moscow
Abstract:
The purpose of this paper is to prove the following result. Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be an arbitrary sequence of independent random variables on a locally compact group $G$. We construct the compositions
$$
\xi_n=\xi_1\xi_2\dots\xi_n.
$$
If elements $a_n\in G$ can be found so that the sequence of normalized compositions
$$
\eta_n=\zeta_n a_n
$$
as a limiting distribution, then the group $G$ is compact.
Received: 26.04.1963
Citation:
B. M. Kloss, “Topology in a Group and Convergence of Distributions”, Teor. Veroyatnost. i Primenen., 9:1 (1964), 122–125; Theory Probab. Appl., 9:1 (1964), 111–114
Linking options:
https://www.mathnet.ru/eng/tvp349 https://www.mathnet.ru/eng/tvp/v9/i1/p122
|
Statistics & downloads: |
Abstract page: | 210 | Full-text PDF : | 127 |
|