|
Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 2, Pages 404–412
(Mi tvp3485)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Short Communications
Comparison theorems for distribution functions of quadratic forms of Gaussian vectors
N. K. Bakirov Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Abstract:
Let $Q_1$ and $Q_2$ be nonnegatively definite quadratic forms of centered Gaussian random variables (r.v.'s) satisfying normalization condition $\mathbf{E}Q_1={\mathbf E}Q_2=1$. If the vector of eigenvalues of $Q_1$ majorizes that of $Q_2$, then the distribution function of $Q_1$ is less than the distribution function of $Q_2$ when their arguments exceed 2. Some statistical applications are given.
Keywords:
comparison theorem, quadratic form of r.v.'s, quadratic statistics.
Received: 07.04.1992
Citation:
N. K. Bakirov, “Comparison theorems for distribution functions of quadratic forms of Gaussian vectors”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 404–412; Theory Probab. Appl., 40:2 (1995), 340–348
Linking options:
https://www.mathnet.ru/eng/tvp3485 https://www.mathnet.ru/eng/tvp/v40/i2/p404
|
|