|
Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 2, Pages 324–346
(Mi tvp3480)
|
|
|
|
Robust algorithms of the type of stochastic approximation (continuous time)
S. V. Lototskii Institute of Control Sciences
Abstract:
The paper considers the problem of estimating an unknown drift parameter $\theta$ with observations $yt=\theta+\xi_t$ where $\xi_t$ is a stationary ergodic process. We prove strong consistency and asymptotic normality for the nonlinear estimation of the type of stochastic approximation
$$
\hat\theta=\theta_0+\int_0^t\frac{H(y_s-\hat\theta_s)}{(1+s)a_s}\,ds.
$$
A method of choosing optimal (in the sense of limit variance) estimation of a function $H$ is offered.
Keywords:
nonlinear estimation of a drift parameter, robustness, stochastic approximation.
Received: 02.04.1992
Citation:
S. V. Lototskii, “Robust algorithms of the type of stochastic approximation (continuous time)”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 324–346; Theory Probab. Appl., 40:2 (1995), 309–328
Linking options:
https://www.mathnet.ru/eng/tvp3480 https://www.mathnet.ru/eng/tvp/v40/i2/p324
|
|