Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 2, Pages 313–323 (Mi tvp3479)  

This article is cited in 12 scientific papers (total in 12 papers)

The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a parameter

V. A. Lebedev

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Abstract: For a stochastic integral with respect to an $L^0$-valued random measure $\theta$ in the sense of Bichteler and Jacod, whose integrand from $L^{1,0}(\theta)$ depends measurably on a parameter in a measurable space, we establish the measurability in this parameter. In the $L^1$-valued case with a norm integrable in the parameter we prove a theorem on the rearrangement of integrals which generalizes the classical Fubini theorem. An analogous result for an $L^0$-valued measure is obtained by its prelocal reduction to an $L^1$-valued measure.
Keywords: the Fubini theorem, $\sigma$-finite $L^p$-valued random measure, the stochastic integral process with respect to such a measure, its measurability and integrability in a parameter.
Received: 06.02.1992
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 2, Pages 285–293
DOI: https://doi.org/10.1137/1140031
Bibliographic databases:
Language: Russian
Citation: V. A. Lebedev, “The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a parameter”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 313–323; Theory Probab. Appl., 40:2 (1995), 285–293
Citation in format AMSBIB
\Bibitem{Leb95}
\by V.~A.~Lebedev
\paper The Fubini theorem for stochastic integrals with respect to $L^0$-valued random measures depending on a~parameter
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 2
\pages 313--323
\mathnet{http://mi.mathnet.ru/tvp3479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346469}
\zmath{https://zbmath.org/?q=an:0852.60060|0844.60028}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 2
\pages 285--293
\crossref{https://doi.org/10.1137/1140031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE35900008}
Linking options:
  • https://www.mathnet.ru/eng/tvp3479
  • https://www.mathnet.ru/eng/tvp/v40/i2/p313
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:676
    Full-text PDF :185
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024