Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 3, Pages 694–698 (Mi tvp3470)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

On probability density functions which are their own characteristic functions

K. Schladitz, H. J. Engelbert

Friedrich-Schiller-Universität Jena, Institut für Stochastik, Jena, Germany
Full-text PDF (272 kB) Citations (3)
Abstract: Let $p$ be the probability density of a probability distribution $P$ on the real line $\mathbf R$ with respect to the Lebesgue measure. The characteristic function $\widehat p$ of $p$ is defined as
$$ \widehat p(x):=\int_{\mathbf{R}}e^{ixy}p(y)\,dy,\qquad x\in\mathbf{R}. $$
We consider probability densities $p$ which are their own characteristic functions, that means
\begin{equation} \widehat p(x)=\frac1{p(0)}p(x),\qquad x\in\mathbf{R}. \tag{1} \end{equation}
By linear combination of Hermitian functions we find a family of probability densities which are solutions of this integral equation. These solutions are entire functions of order 2 and type $\frac12$. This is contradictory to Corollary 3 in [J. L. Teugels, Bull. Soc. Math. Belg., 23 (1971), pp. 236–262.]. Furthermore, we characterize the general solution of the integral equation (1) within the convex cone of probability density functions.
Keywords: probability density functions, characteristic function, positive definite functions, Hermitian functions, Fourier transform.
Received: 16.06.1994
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 3, Pages 577–581
DOI: https://doi.org/10.1137/1140065
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. Schladitz, H. J. Engelbert, “On probability density functions which are their own characteristic functions”, Teor. Veroyatnost. i Primenen., 40:3 (1995), 694–698; Theory Probab. Appl., 40:3 (1995), 577–581
Citation in format AMSBIB
\Bibitem{SchEng95}
\by K.~Schladitz, H.~J.~Engelbert
\paper On probability density functions which are their own characteristic functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 3
\pages 694--698
\mathnet{http://mi.mathnet.ru/tvp3470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1402001}
\zmath{https://zbmath.org/?q=an:0869.60010}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 3
\pages 577--581
\crossref{https://doi.org/10.1137/1140065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VN31700020}
Linking options:
  • https://www.mathnet.ru/eng/tvp3470
  • https://www.mathnet.ru/eng/tvp/v40/i3/p694
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :156
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024