|
Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 3, Pages 596–614
(Mi tvp3457)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On minimal moment assumptions in Berry–Esséen theorems for $U$-statistics
V. Bentkus, F. Götze Fakultät fur Mathematik, Universität Bielefeld, Bielefeld, Germany
Abstract:
The rate of convergence for asymptotically normal $U$-statistics is of order $O(n^{-1/2})$ provided that
$$
\mathbf{E}|\mathbf{E}\{h(X_1,X_2)\mid X_1\}|^3<\infty \quad\text{and}\quad \mathbf{E}|h(X_1,X_2)|^{5/3}<\infty,
$$
where $h$ is a symmetric kernel corresponding to the $U$-statistic. Bentkus, Götze, and Zitikis [preprint 92-075, Universität Bielefeld, 1992] have shown that the last moment condition is the best possible, that is, it cannot be replaced by a moment of order $\frac53-\varepsilon$, for any $\varepsilon>0$. In this paper we extend the result for statistics of higher orders and with possible nonnormal limit distributions.
Keywords:
U-statistics Berry–Esseén bound, convergence rate, lower bound.
Received: 26.08.1993
Citation:
V. Bentkus, F. Götze, “On minimal moment assumptions in Berry–Esséen theorems for $U$-statistics”, Teor. Veroyatnost. i Primenen., 40:3 (1995), 596–614; Theory Probab. Appl., 40:3 (1995), 430–445
Linking options:
https://www.mathnet.ru/eng/tvp3457 https://www.mathnet.ru/eng/tvp/v40/i3/p596
|
Statistics & downloads: |
Abstract page: | 170 | Full-text PDF : | 62 | First page: | 8 |
|