Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 213–219 (Mi tvp3439)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters

Nguyen Van Giang
Full-text PDF (375 kB) Citations (1)
Abstract: For finite-dimensional array $X(m)=X(m_1,\dots,m_k)$ of independent identically distributed Banach space valued random variables we consider sums $S(n)=S(n_1,\dots,n_k)$ of $X(m)$ over $m_i\in\{1,\dots,n_i\}$ $(i-1,\dots,k)$. Under some conditions on individual random variable $X$ and on the geometry of Banach space the strong law of large numbers for $S(n)$ and estimates for large deviations as $\max n_i\to\infty$ are obtained.
Keywords: Banach space valued random Variables, law of large numbers for multidimensional sums, large deviation probabilities.
Received: 04.06.1991
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 1, Pages 175–181
DOI: https://doi.org/10.1137/1140018
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nguyen Van Giang, “Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 213–219; Theory Probab. Appl., 40:1 (1995), 175–181
Citation in format AMSBIB
\Bibitem{Ngu95}
\by Nguyen Van Giang
\paper Marcinkiewicz--Zygmund laws for Banach space valued random variables with multidimensional parameters
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 1
\pages 213--219
\mathnet{http://mi.mathnet.ru/tvp3439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346747}
\zmath{https://zbmath.org/?q=an:0843.60004}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 1
\pages 175--181
\crossref{https://doi.org/10.1137/1140018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UH07100018}
Linking options:
  • https://www.mathnet.ru/eng/tvp3439
  • https://www.mathnet.ru/eng/tvp/v40/i1/p213
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :64
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024