|
Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 1, Pages 213–219
(Mi tvp3439)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters
Nguyen Van Giang
Abstract:
For finite-dimensional array $X(m)=X(m_1,\dots,m_k)$ of independent identically distributed Banach space valued random variables we consider sums $S(n)=S(n_1,\dots,n_k)$ of $X(m)$ over $m_i\in\{1,\dots,n_i\}$ $(i-1,\dots,k)$. Under some conditions on individual random variable $X$ and on the geometry of Banach space the strong law of large numbers for $S(n)$ and estimates for large deviations as $\max n_i\to\infty$ are obtained.
Keywords:
Banach space valued random Variables, law of large numbers for multidimensional sums, large deviation probabilities.
Received: 04.06.1991
Citation:
Nguyen Van Giang, “Marcinkiewicz–Zygmund laws for Banach space valued random variables with multidimensional parameters”, Teor. Veroyatnost. i Primenen., 40:1 (1995), 213–219; Theory Probab. Appl., 40:1 (1995), 175–181
Linking options:
https://www.mathnet.ru/eng/tvp3439 https://www.mathnet.ru/eng/tvp/v40/i1/p213
|
Statistics & downloads: |
Abstract page: | 199 | Full-text PDF : | 64 | First page: | 15 |
|