Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1976, Volume 21, Issue 4, Pages 759–774 (Mi tvp3421)  

This article is cited in 64 scientific papers (total in 64 papers)

On a non-parametric analogue of the information matrix

Yu. A. Koševnik, B. Ya. Levit

Moscow
Abstract: For a class of differentiable functions Φ(F) of distributions F, an analogue of the information matrix I(F) is considered. In terms of matrix I(F), bounds for risks in estimating Φ(F) are obtained; this is an extension, to the non-parametric case, of a result of J. Hajek [2]. Some examples are discussed including estimation of Φ(F) under the restriction that the values of differentiable functions Ψ(F) are known.
Received: 14.12.1975
English version:
Theory of Probability and its Applications, 1976, Volume 21, Issue 4, Pages 738–753
DOI: https://doi.org/10.1137/1121087
Bibliographic databases:
Language: Russian
Citation: Yu. A. Koševnik, B. Ya. Levit, “On a non-parametric analogue of the information matrix”, Teor. Veroyatnost. i Primenen., 21:4 (1976), 759–774; Theory Probab. Appl., 21:4 (1976), 738–753
Citation in format AMSBIB
\Bibitem{KosLev76}
\by Yu.~A.~Ko{\v s}evnik, B.~Ya.~Levit
\paper On a~non-parametric analogue of the information matrix
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 4
\pages 759--774
\mathnet{http://mi.mathnet.ru/tvp3421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=428578}
\zmath{https://zbmath.org/?q=an:0388.62037}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 21
\issue 4
\pages 738--753
\crossref{https://doi.org/10.1137/1121087}
Linking options:
  • https://www.mathnet.ru/eng/tvp3421
  • https://www.mathnet.ru/eng/tvp/v21/i4/p759
  • This publication is cited in the following 64 articles:
    1. Samriddha Lahiry, Michael Nussbaum, “Minimax estimation of low-rank quantum states and their linear functionals”, Bernoulli, 30:1 (2024)  crossref
    2. Francesco Gili, Geurt Jongbloed, Aad van der Vaart, “Adaptive and efficient isotonic estimation in Wicksell's problem”, Journal of Nonparametric Statistics, 2024, 1  crossref
    3. Iván Díaz, Oleksander Savenkov, Hooman Kamel, “Nonparametric targeted Bayesian estimation of class proportions in unlabeled data”, Biostatistics, 23:1 (2022), 274  crossref
    4. Juan Carlos Escanciano, “SEMIPARAMETRIC IDENTIFICATION AND FISHER INFORMATION”, Econom. Theory, 38:2 (2022), 301  crossref
    5. Francesco Bravo, Juan Carlos Escanciano, Ingrid Van Keilegom, “Two-step semiparametric empirical likelihood inference”, Ann. Statist., 48:1 (2020)  crossref
    6. Olivier Collier, Arnak S. Dalalyan, “Multidimensional linear functional estimation in sparse Gaussian models and robust estimation of the mean”, Electron. J. Statist., 13:2 (2019)  crossref
    7. Chris A.J. Klaassen, Nanang Susyanto, “Semiparametrically efficient estimation of Euclidean parameters under equality constraints”, Journal of Statistical Planning and Inference, 201 (2019), 120  crossref
    8. Iván Díaz, “Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning”, Biostatistics, 2019  crossref
    9. Marco Carone, Alexander R. Luedtke, Mark J. van der Laan, “Toward Computerized Efficient Estimation in Infinite-Dimensional Models”, Journal of the American Statistical Association, 114:527 (2019), 1174  crossref
    10. Olivier Collier, Arnak S. Dalalyan, “Estimating linear functionals of a sparse family of Poisson means”, Stat Inference Stoch Process, 21:2 (2018), 331  crossref
    11. Johann Pfanzagl, Springer Series in Statistics, Mathematical Statistics, 2017, 107  crossref
    12. Juan Carlos Escanciano, “Semiparametric Identification and Fisher Information”, SSRN Journal, 2016  crossref
    13. Jiantao Jiao, Kartik Venkat, Yanjun Han, Tsachy Weissman, “Minimax Estimation of Functionals of Discrete Distributions”, IEEE Trans. Inform. Theory, 61:5 (2015), 2835  crossref
    14. Kyungchul Song, Advances in Econometrics, 33, Essays in Honor of Peter C. B. Phillips, 2014, 557  crossref
    15. Anton Schick, Wolfgang Wefelmeyer, “Some Developments in Semiparametric Statistics”, Journal of Statistical Theory and Practice, 2:3 (2008), 475  crossref
    16. M. S. Ermakov, “On semiparametric inference in moderate deviation zone”, J. Math. Sci. (N. Y.), 152:6 (2008), 869–874  mathnet  crossref
    17. Patrick Gagliardini, Christian Gouriéroux, “An efficient nonparametric estimator for models with nonlinear dependence”, Journal of Econometrics, 137:1 (2007), 189  crossref
    18. Markus Frölich, “On the inefficiency of propensity score matching”, AStA, 91:3 (2007), 279  crossref
    19. Markus Frölich, “Nonparametric IV estimation of local average treatment effects with covariates”, Journal of Econometrics, 139:1 (2007), 35  crossref
    20. Arnak S. Dalalyan, Yury A. Kutoyants, “On second order minimax estimation of invariant density for ergodic diffusion”, Statistics & Decisions, 22:1-2004 (2004), 17  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :174
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025