Citation:
G. K. Eagleson, “Some simple conditions for limit theorems to be mixing”, Teor. Veroyatnost. i Primenen., 21:3 (1976), 653–660; Theory Probab. Appl., 21:3 (1977), 637–643
\Bibitem{Eag76}
\by G.~K.~Eagleson
\paper Some simple conditions for limit theorems to be mixing
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 3
\pages 653--660
\mathnet{http://mi.mathnet.ru/tvp3412}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=428388}
\zmath{https://zbmath.org/?q=an:0365.60025}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 3
\pages 637--643
\crossref{https://doi.org/10.1137/1121078}
Linking options:
https://www.mathnet.ru/eng/tvp3412
https://www.mathnet.ru/eng/tvp/v21/i3/p653
This publication is cited in the following 12 articles:
Alexey Korepanov, Zemer Kosloff, Ian Melbourne, “Deterministic homogenization under optimal moment assumptions for fast-slow systems. Part 1”, Ann. Inst. H. Poincaré Probab. Statist., 58:3 (2022)
Gouezel S., “Growth of Normalizing Sequences in Limit Theorems For Conservative Maps”, Electron. Commun. Probab., 23 (2018), 99
Jon Aaronson, Benjamin Weiss, “Distributional limits of positive, ergodic stationary processes and infinite ergodic transformations”, Ann. Inst. H. Poincaré Probab. Statist., 54:2 (2018)
Ian Melbourne, Roland Zweimüller, “Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems”, Ann. Inst. H. Poincaré Probab. Statist., 51:2 (2015)
Dmitry Dolgopyat, Carlangelo Liverani, “Non-perturbative approach to random walk in markovian environment”, Electron. Commun. Probab., 14:none (2009)
Jiang X.X., Hahn M.G., “Central limit theorems for exchangeable random variables when limits are scale mixtures of normals”, Journal of Theoretical Probability, 16:3 (2003), 543–571
Jérôme Dedecker, Florence Merlevède, “Necessary and sufficient conditions for the conditional central limit theorem”, Ann. Probab., 30:3 (2002)
A. Touati, “Functional convergence in law of martingale sequences to a mixture of Brownian motions”, Theory Probab. Appl., 36:4 (1991), 752–771
Paul D Feigin, “Stable convergence of semimartingales”, Stochastic Processes and their Applications, 19:1 (1985), 125
R. Bitmead, “Convergence in distribution of LMS-type adaptive parameter estimates”, IEEE Trans. Automat. Contr., 28:1 (1983), 54
Søren Asmussen, “Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the GI/G/1 queue”, Advances in Applied Probability, 14:1 (1982), 143