Abstract:
Let Xt=(X1t,…,Xnt), 0⩽t⩽1, be a continuous square integrable martingale for which the processes ⟨Xi,Xj⟩t, i,j=1,…,n, are deterministic, and let (Yt,FXt) be a square integrable martingale where FXt=σ{Xs,s⩽t}.
In the paper, the representation Yt=Y0+∫t0n∑i=1fis−dXis is proved where fis are previsible processes with M∫∞0n∑i,j=1fisfjsd⟨Xi,Xj⟩s<∞.
Citation:
L. I. Gal'čuk, “A representation of some martingales”, Teor. Veroyatnost. i Primenen., 21:3 (1976), 613–620; Theory Probab. Appl., 21:3 (1977), 599–605
\Bibitem{Gal76}
\by L.~I.~Gal'{\v{c}}uk
\paper A~representation of some martingales
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 3
\pages 613--620
\mathnet{http://mi.mathnet.ru/tvp3405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=420831}
\zmath{https://zbmath.org/?q=an:0364.60079}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 3
\pages 599--605
\crossref{https://doi.org/10.1137/1121071}
Linking options:
https://www.mathnet.ru/eng/tvp3405
https://www.mathnet.ru/eng/tvp/v21/i3/p613
This publication is cited in the following 5 articles:
Theory Probab. Appl., 60:1 (2016), 19–44
Franz Konecny, Probability and Statistical Inference, 1982, 171
L. I. Gal'čuk, “Stable subspaces and a theorem on a decomposition of martingales”, Theory Probab. Appl., 25:2 (1981), 366–370
L. I. Gal'čuk, “On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales”, Theory Probab. Appl., 23:4 (1979), 751–763
L. I. Gal'čuk, “An extension of the Girsanov theorem on the change of measures to the case of semi-martingales with jumps”, Theory Probab. Appl., 22:2 (1978), 271–285