|
Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 4, Pages 880–884
(Mi tvp3382)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Short Communications
The central limit theorem for the number of partial long duplications
V. G. Mikhailov Moscow
Abstract:
Let $X_1,X_2,\dots$ be a sequence of independent random variables, $X_i=1,2,\dots$. We prove the central limit theorem for the number of sets ($i_1,\dots,i_m$), $1\le i_1<\dots<i_m\le n$, such that the conditions
$$
X_{i_1+k}=\dots=X_{i_m+k}
$$
are satisfied for exactly $s-d$ values of $k\in\{0,\dots,s-1\}$.
Received: 28.11.1974
Citation:
V. G. Mikhailov, “The central limit theorem for the number of partial long duplications”, Teor. Veroyatnost. i Primenen., 20:4 (1975), 880–884; Theory Probab. Appl., 20:4 (1976), 862–866
Linking options:
https://www.mathnet.ru/eng/tvp3382 https://www.mathnet.ru/eng/tvp/v20/i4/p880
|
Statistics & downloads: |
Abstract page: | 219 | Full-text PDF : | 94 |
|